OPERATING INSTRUCTIONS
AND
PARTS LIST

FOR SERIAL NUMBERS FROM 1-101 UP

POWERMATIC
HOUAILLE, INC.
McMinnville, Tennessee 37110
I. GENERAL SET-UP AND ALIGNMENT

1. RECEIVING
Uncrate and check for shipping damage. Clean all coated and greased surfaces. Read instructions thoroughly. Locate all lubrication points, adjustment; methods of drive.

2. MOUNTING
Mount machine securely to solid foundation. Concrete base mounting preferred. Locate in clean, dry and well ventilated building if possible. Motor and electrical connections should be protected when not in operation or if exposed to weather elements.

3. EXHAUST SYSTEM
Recommended as a must if efficient production operation is required. Not a necessity where limited amount of operation being performed and machine can be kept clean of shavings.

4. INSPECTION
The above machine requires the minimum amount of attention in service. Periodic or regular inspections are recommended to insure machine is in proper adjustment, positive electrical connections; worn or loose "V" belts and bearings heating or loose.

5. BEFORE OPERATING
Check motor nameplate date or wiring diagram of motor and switch for proper voltage connection before wiring into line. Run motor without load to check the connections and direction of rotation. Always refer to motor nameplate for rotation connection.

II. LUBRICATION

1. The cutterhead and variable speed pulley are mounted in sealed bearings and do not require any lubrication.

2. GREASE LUBRICATION
The clutch, table and feed rollers are equipped with pressure gun fittings and must be lubricated regularly every twenty-five hours of operation with a good grade High Speed Ball Bearing grease. Also, the feed drive gears should be surfaced greased with the same grease.

3. OIL LUBRICATION
The surface fittings, bed ways, handwheel drive shaft gears and thrust screws should be lubricated regularly every ten hours of operation with all equivalent to SAE 10. A light film of oil on the table when not in use will prevent rusting.

III. OPERATING ADJUSTMENTS

PLANER BED:
The planer bed mounts in the main frame panels and is raised and lowered on acme screws mounted in thrust bearings. The screws are operated through gears by a large handwheel (1) on the front of the Planer.

The planer bed is held rigid between frames by shims on each side of the bed and is adjusted with two jack screws (12) that can be tightened against the shims. These shims should be adjusted tight enough to prevent rocking or moving when material is fed through the Planer but not tight enough to prevent raising or lowering of the table.

If planer bed rocks when the machine is in operation, dips will appear in the material being planed. The planer bed must be level with the cutterhead. Check this by lowering the bed to permit placing a small jack-screw type gauge (or small square block) between the bed and the cutterhead at the extreme right side of the bed. Raise bed with handwheel (1) until the screw gauge or block just touches the cutterhead. Move the block to the left side of the table and check under the cutterhead. If the bed is not level with the cutterhead, the bed can be raised or lowered by loosening the set screw in bed nut (13) and turning to the right or left to raise or lower the bed to the proper height—lock the bed nut with the set screw.

PLANER BED IDLER ROLLERS:
Adjusting screws (14) for planer bed idler rollers are located directly under the bearings. Adjust from .000 to .010" above bed level for planing smooth or dry material, .010" to .015" for medium rough and .025" to .035" for rough sawed or green material. Keep rollers adjusted to same height at each end. When rollers are set too high, a scrape or bite will appear at the ends of planed material. If set too low feeding will be restricted due to friction on planer bed.

(WITH QUICK-SET ADJUSTMENTS)
Planer bed rollers are adjusted to the proper height with a quick-set handle mounted on the right side of the planer bed. The height of the rollers in relation to the bed surface is indicated by a graduated dial and pointer on the quick-set handle. If table rollers do not correspond with the height indicator scale, adjustments can be made by loosening the set screw (26) fig. 4 in the roller adjusting arms. Set indicator pointer at zero on the gauge and turn adjusting screws (27) until the bed rollers are level with the planer bed. To plane rough lumber, set quick-set indicator on .030", for medium rough .010" to .015" and for finished lumber .000" to .010". Set the rollers high enough so that the lumber will feed through the machine without hesitation.

POWER DRIVEN FEED ROLLS:
The power driven corrugated infeed roller (7) and smooth outfeed roller (25) are gear driven through V-belts arrangement from cutterhead shaft. The feed roller bearing housings are floating type and held against the feed roller adjusting screws (14) by means of adjustable pressure springs (22). The feed rollers should be adjusted to set approximately 1/16" below arc of the cutterhead knives. A gauge or block may be used to assure proper height. To set feed rolls, lower planer bed about 3" below arc of cutterhead. Place gauge or wooden block directly under cutterhead and turn head until one knife is down. Raise planer bed until block is 1/16" below knife edge. Check the roller to see that each end is the same. Too much pressure on infeed corrugated roller will leave markings on material. Too little pressure will restrict feed.

CHIPBREAKER:
The chipbreaker is a three piece type which mounts and adjusts concentric with cutterhead. The chipbreaker adjusting screws (6) should be adjusted to allow chipbreaker to set 1/16" below level of infeed corrugated feed roller.

PRESSURE BAR:
The pressure bar is a three piece type which mounts and adjusts concentric with cutterhead. The pressure bar should be set equal to the arc of the cutterhead. One
method is to feed a wide board about four feet long half way through the machine. Stop the feed with the clutch and set the hold-down bar so that it just touches the board. To set the pressure bar, loosen both top and bottom lock nuts on adjusting studs (24), adjusting the bar with the adjusting bar and lock in place with the locking nuts. Remember, the pressure bar is the most important adjustment on the Planer. If the pressure bar is too high, cutterhead knives will snap beginning end of material; if set too low, the material will not feed through machine.

MATERIAL THICKNESS GAUGE:
To set the indicator on the material thickness scale (11) to indicate properly after changing knives, loosen the screw in the planer bed that holds the brass pointer and set to the thickness the material measures when planed or fed through the machine. The hole that mounts the brass pointer is slotted and will permit proper adjustment.

CUTTERHEAD:
The cutterhead is equipped with three knives in position with the lock shims and set screws (18). Knives must be adjusted to set evenly and level in the cutterhead. Before removing knives from cutterhead, the knife gauge should be adjusted to the height of the knives so the height of the knives will not be changed relative to the other parts of the head when the knives are replaced. The feed rollers, chipbreaker and pressure bar are adjusted to the arc of the knife cut. If the height of the knives are raised or lowered, the feed rollers, chipbreaker and pressure bar should be adjusted accordingly. Knives should not protrude more than 3/32” beyond radius of cutterhead. When replacing knives after sharpening, place the “Jack screw” studs in place making sure the “step” will act as a seat for the knife. Drop knife and shim into cutterhead slot so that the beveled edge of knife is just below the surface of the head. Tighten the two outside knife shim screws just enough to hold the knives snugly in the head. With knife setting gauge in place over one extreme end of the head, turn the allen screw in “Jack screw” plug, raising knife until knife touches stop on knife setting gauge. Repeat operation on other end of the cutterhead. Next, tighten the center knife locking shim bolt. Set the other knives in the cutterhead before tightening the remainder of the shim bolts. After the knives have been set, final locking of knives should be done by rotating cutterhead and locking all shims uniformly. CAUTION—If one knife is locked tightly before the others, it may spring the cutterhead and cause vibration or uneven knife height.

KNIFE CARE:
VERY IMPORTANT—knives must be kept sharp. The knives do almost all the work and they will not do satisfactory work if they are dull. The sets of knives are matched and balanced at the factory. When the knives are sharpened, care should be taken that they are kept in balance.

Operating and Safety Instructions

1. Be sure the machine frame is electrically grounded.

2. Remove or fasten loose articles of clothing such as necktie, sleeves, coat, etcetera.

3. Remove finger rings and watch.

4. Use a safety face shield, goggles or glasses to protect eyes.

5. Keep the floor around the machine clean and free from scraps, sawdust, oil or grease to minimize the danger of slipping.

6. Before starting the planer:
 a. Clear machine and table area of dust, chips, tools or foreign matter.
 b. Check knives for sharpness. dull blades can cause pounding, kickbacks and poor planing.
 c. Check the knives for cracks and nicks and that they are securely locked in the cutterhead. Broken or loose knives can be thrown out of the machine causing severe or fatal injury.
 d. Check for the proper setting of the insect rollers, chip breaker, pressure bar and outfeed rollers. Improper settings can cause kickbacks and poor planing.
 e. Check for proper direction of rotation of the cutterhead.
 f. Make sure all guards are in place and securely fastened.

7. Do not stand or walk directly behind the machine when it is running. The direction of cutterhead rotation throws chips and foreign material from the rear of the machine.

8. Check the material thickness, depth of cut desired and the machine capacity. Never overload the planer by trying to cut beyond its capacity.

9. When feeding material into the machine, stand to the side nearest the switch and never behind the board. Kickbacks can cause serious injury.

10. In case of a jam-up or stopping material part way through the cut -- stop the machine, wait until the cutterhead is completely stopped and lower the table to clear the work. Attempting removal before the cutterhead is stopped can cause kickbacks. Never attempt to force the work through the machine. If the material does not feed properly, stop the machine and correct the cause. On planers equipped with a feed reversing switch, a jam-up or stopping of the board may be cleared by reversing the feed direction.
11. Never feed two boards through a planer with solid infeed rollers at the same time (side-by-side or stacked). Kickback can result causing serious injury. If your machine is equipped with sectional infeed roll and chipbreaker, side-by-side feeding of narrow boards can be done safely.

12. Extra care should be used in feeding short boards. Use another piece of equal thickness in back of the first board to follow it through the planer. The shortest board that can be fed through is one which has a length 1/2" greater than the span between the infeed and outfeed rollers.

13. If leaving the machine area, turn the machine off and wait until all moving parts stop before departing.

14. Give the work you're doing your undivided attention. Looking around, carrying on a conversation and "horse play" are careless acts that can cause serious injury.

15. Stop the machine when making adjustments and disconnect it from its power source when adjusting, replacing and regrinding the cutterhead blades or performing any maintenance.

16. Use only Powermatic or factory authorized replacement parts and accessories, otherwise the warranty and guarantee is null and void.

17. Do not use this Powermatic planer for other than its intended use. If used for other purposes, Powermatic disclaims any real or implied warranty and holds itself harmless for any injury that may result.

WARNING: Do not equip or use this machine with a larger motor than 7 1/2 horsepower at 3600 R.P.M. The use of a larger horsepower or higher speed motor voids the warranty and Powermatic holds itself harmless from any injury that may result.
IV. INSTRUCTIONS FOR ADJUSTING AND OPERATING THE 180-18" KNIFE GRINDER AND JOINTER

JOINTING AND GRINDING PROCEDURE:
The first and most important step is to JOINT the knives, then GRIND them. Jointing knives first assure uniform knife height. The knives are fastened in a round head and the cutting is done in an arc by the front edge of the knife. Even though knives are installed with a micrometer gauge, an absolute uniformity of height cannot be obtained and maintained. The knives should all be jointed until all edges are uniform. The jointing process actually sharpens the knives. After jointing, the jointer head is removed and grinding head installed. The excessive joint is then ground from the bevel of the knife edge.

INSTALLATION OF GRINDING BAR AND ADJUSTMENT OF JOINTER:
1. Carefully study illustrated numbers on pictures (Figures 4, 5, 6).
2. Remove cover screws and cover guard from top of Planer.
3. Place jointer bar in position and bolt down with cap screws (14) fig. 4. Cap screws should be tightened very snugly.
4. Place jointer bracket on jointer bar head and fasten with set screws (15) fig. 4.
5. Rotate cutterhead until the edge of the cutterhead knife slot is in line with the edge of the jointer stone (16) fig. 4.
6. Move jointing head back and forth on the jointing bar with handwheel (17) fig. 4 for parallel alignment. If the bar does not move in exact parallel with the knife edge, the holes in the jointer bar base (18) fig. 4 are large enough to permit alignment of the bar. (Make the alignment from one end of the bar).
7. When jointer bar is in alignment, cap screw (14) fig. 4 should be securely tightened. To level jointer bar with cutterhead, rotate cutterhead until jointer stone is be- tween two of the knives. Adjust the jointer stone with handwheel (19) fig. 4 until it just clears the cutterhead.
8. Operate jointer head back and check with thickness gauge (20) fig. 5, or piece of paper to see if jointer bar is level with cutterhead.
9. To level bar with cutterhead, loosen cap screws on back of jointer bar bracket and adjust with adjusting screws.
10. Check to see if jointing head is in parallel alignment with cutterhead.

JOINTING CUTTERHEAD KNIVES:
11. To joint knives, adjust jointer stone until it just clears knives evenly, lower jointer stone until it just touches knives.
12. Move the jointer head to a position past the cutterhead. With the Planer running at full speed, operate jointer head back and forth RAPIDLY lowering jointer head, if necessary, until knives are properly jointed. Do not OVERJOINT knives.

GRINDING CUTTERHEAD KNIVES:
Mount grinding attachment on jointer bar and secure in place with set screws (15) Fig. 4. Lock cutterhead in place for knife grinding with cutterhead lock (23) Fig. 6. Turn the knob (23) until the pin in the casting (24) enters the hole in knob (23). Turn the cutterhead by hand until the cutterhead is locked in place. Turn grinding wheel (9) Fig. 6 until the wheel very lightly touches knife (8) Fig. 6.
Move the grinder (9) to position past the cutterhead knives with handwheel (17). Start grinder motor with switch (10) Fig. 6, set grinding wheel to take cut, and with hand wheel (17) rapidly move grinder back and forth. Be sure to move grinder fast enough to prevent burning of the knives. Knives should always be ground after jointing, leaving a very slight joint on the knife edge. Each knife should be finished before moving to the next knife. Care should be taken to keep all knives the same weight. Knives out of balance will cause excessive vibration of the cutterhead.
Before operating the grinder, the ways on the grinder bar and the lead screw should be lubricated with a light film of oil. The gib screws on the head should be adjusted to keep any excessive wear or movement out of the head.
V. PLANEER OPERATING HINTS

IF CLIP OR SNIPE APPEARS AT BEGINNING OF BOARD:
1. Pressure bar may be set too low.
2. Chipbreaker may be set too high.
3. Upper infeed roll may be set too high.
4. Lower infeed roll may be set too high.
5. Spring tension may be too light on pressure bar.

IF CLIP OR SNIPE APPEARS ON END OF LUMBER:
1. Pressure bar may be set too high.
2. Lower outfeed roll may be set too high.
3. Upper outfeed roll may be set too low.
4. Lumber may not be butted.
5. Grain may be running against knives.

IF KNIVES TEAR OUT LUMBER:
1. Feed may be too fast.
2. Moisture content may be too high.
3. Head may be running too slowly.
4. Cut may be too heavy.
5. Cutting angle may be too large.
6. Grain may be running against knives.

IF KNIVES RAISE THE GRAIN:
1. Feed may be too fast.
2. Cutting angle may be too large.
3. Head may be running too slowly.
4. Moisture content of lumber may be too high.
5. Cut may be too heavy.

IF CHIP MARKS APPEAR ON LUMBER:
1. Blower system may not be strong enough.
2. Feed may be too fast.
3. May be loose connection in blower system—no suction.
4. Exhaust pipe may join at too large an angle to main blower pipe.

IF PANELS ARE TAPERED ACROSS THE WIDTH:
1. Planer bed out of level with cutterhead.
2. Knives not set even with cutterhead.

IF UNDESIRABLE POUNDED GLOSSY FINISH APPEARS:
1. Knives may be dull.
2. Feed may be too slow.

IF WASHBOARD FINISH APPEARS:
1. Knives may have been driven back into the head.
2. Machine may be completely out of adjustment.
3. Planer bed loose and rocking in ways.

IF REVOLUTION MARK SHOWS UP:
1. Knives may be ground poorly.
2. Knives not set properly or evenly.

IF LINES APPEAR AT RIGHT ANGLES TO THE KNIFE MARKS:
1. Knives may have checkered and nicked up by over-grinding and taking temper out of steel.
2. Chips may have wedged between rolls and tables.
3. Pressure bar may be dragging.

IF STOCK TWISTS IN MACHINE:
1. Pressure bar may be cocked.
2. Upper outfeed roll may be cocked.
3. Upper outfeed roll may have uneven spring tension on it.
4. Lower rolls may be cocked.

IF STOCK STICKS OR HESITATES IN MACHINE:
1. Pressure bar may be set too low.
2. Lower rolls may be set too low.
3. Upper rolls may not be set low enough.
4. Cut may be too heavy.
5. Causer board may help lumber through machine.

IF MACHINE IS NOISY AND VIBRATES AND POUNDS:
1. Knives may be too dull.
2. Machine may not be leveled up correctly.
3. Machine may not be on solid foundation.
4. Pressure bar may be set too low.

IF MOTOR KICKS OUT:
1. Knives may be dull, thus overloading motor.
2. Pressure bar may be set too low, putting drag on motor.
3. Motor may be drawing high current because other machinery in the plant in use has pulled down the voltage.
4. Machine may be out of adjustment.
5. Lower rolls may be set too low.
PARTS LIST FOR MODEL 180-18” PLANER

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Description</th>
<th>Quantity Required</th>
<th>PART NO.</th>
<th>Description</th>
<th>Quantity Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>180-501</td>
<td>Base, Planer</td>
<td>1</td>
<td>180-561</td>
<td>Lock Washer, Height Adj. Bolt</td>
<td>4</td>
</tr>
<tr>
<td>180-502</td>
<td>Hanger, Handwheel Gear, Table Raising</td>
<td>1</td>
<td>180-562</td>
<td>Locknut, Height Adj. Bolt 5/16-18 Hex</td>
<td>4</td>
</tr>
<tr>
<td>180-503</td>
<td>Shaft, Handwheel Gear, Table Raising</td>
<td>1</td>
<td>180-563</td>
<td>Screw, Quik-Set Height Adj. R. H. or L. H.</td>
<td>4</td>
</tr>
<tr>
<td>180-504</td>
<td>Handwheel, Table Raising</td>
<td>1</td>
<td>180-564</td>
<td>Roller, Infeed</td>
<td>1</td>
</tr>
<tr>
<td>180-505</td>
<td>Setscrew, Handwheel 5/16-18 x 5/16 lg</td>
<td>1</td>
<td>180-565</td>
<td>Bearing Housing, Infeed Roller, L. H. (Int. w/560)</td>
<td>1</td>
</tr>
<tr>
<td>180-506</td>
<td>Collar, Handwheel Shaft, Table Raising</td>
<td>1</td>
<td>180-567</td>
<td>Grease Fitting</td>
<td>4</td>
</tr>
<tr>
<td>180-507</td>
<td>Setscrew, Collar 5/16-18 x 5/16 lg</td>
<td>1</td>
<td>180-568</td>
<td>Spring, Feed Roll Pressure</td>
<td>4</td>
</tr>
<tr>
<td>180-508</td>
<td>Countershaft, Table Raising</td>
<td>1</td>
<td>180-569</td>
<td>Cap, Pressure Spring</td>
<td>4</td>
</tr>
<tr>
<td>180-509</td>
<td>Woodruff Key, Countershaft #608</td>
<td>3</td>
<td>180-570</td>
<td>Screw, Pressure Spring Cap, ½-13 x 1¼</td>
<td>4</td>
</tr>
<tr>
<td>180-510</td>
<td>Bevel Gear, Table Raising</td>
<td>1</td>
<td>180-571</td>
<td>Key, Infeed Roller</td>
<td>1</td>
</tr>
<tr>
<td>180-511</td>
<td>Setscrew, Bevel Gear ¾-16 x ¾</td>
<td>3</td>
<td>180-572</td>
<td>Bearing Housing, Infeed Roller, R. H. (Int w/579)</td>
<td>1</td>
</tr>
<tr>
<td>180-512</td>
<td>Miter Gear, Table Raising</td>
<td>1</td>
<td>180-573</td>
<td>Bearing Rail, L. H.</td>
<td>1</td>
</tr>
<tr>
<td>180-513</td>
<td>Setscrew, Miter Gear ¾-16 x ¾</td>
<td>3</td>
<td>180-574</td>
<td>Bearing Rail, R. H.</td>
<td>1</td>
</tr>
<tr>
<td>180-514</td>
<td>Woodruff Key, Table Raising Screw #608</td>
<td>2</td>
<td>180-577</td>
<td>Outfeed Roller</td>
<td>1</td>
</tr>
<tr>
<td>180-515</td>
<td>Screw, Table Raising</td>
<td>1</td>
<td>180-578</td>
<td>Key, Outfeed Roller</td>
<td>1</td>
</tr>
<tr>
<td>180-516</td>
<td>Bearing, Thrust, Table Raising Screw 607/218</td>
<td>2</td>
<td>180-579</td>
<td>Bearing Housing, Outfeed Roller, L. H. (Int w/572)</td>
<td>1</td>
</tr>
<tr>
<td>180-517</td>
<td>Nut, Table Raising, L. H.</td>
<td>1</td>
<td>180-580</td>
<td>Bearing Housing, Outfeed Roller, R. H. (Int w/566)</td>
<td>1</td>
</tr>
<tr>
<td>180-518</td>
<td>Nut, Table Raising, R. H.</td>
<td>1</td>
<td>180-581</td>
<td>Bearing Housing, Outfeed Roller, R. H.</td>
<td>1</td>
</tr>
<tr>
<td>180-519</td>
<td>Screw, Table Raising, R. H.</td>
<td>1</td>
<td>180-582</td>
<td>Hanger, Pressure Bar, L. H.</td>
<td>1</td>
</tr>
<tr>
<td>180-521</td>
<td>Front Panel</td>
<td>1</td>
<td>180-583</td>
<td>Hanger, Chipbreaker, L. H.</td>
<td>1</td>
</tr>
<tr>
<td>180-522</td>
<td>Bolt, Front Panel Mounting ¾-16 x 2½ Hex</td>
<td>4</td>
<td>180-584</td>
<td>Key, Cutterhead</td>
<td>1</td>
</tr>
<tr>
<td>180-523</td>
<td>Side Panel, L. H.</td>
<td>1</td>
<td>180-585</td>
<td>Cutterhead</td>
<td>1</td>
</tr>
<tr>
<td>180-524</td>
<td>Bolt, Mounting, Bearing Roll ¾-16 x ¾ Hex</td>
<td>8</td>
<td>180-586</td>
<td>Hanger, Chipbreaker, R. H.</td>
<td>1</td>
</tr>
<tr>
<td>180-525</td>
<td>Washer, Mounting Bolt</td>
<td>8</td>
<td>180-587</td>
<td>Hanger, Pressure Bar, R. H.</td>
<td>1</td>
</tr>
<tr>
<td>180-526</td>
<td>Bearing Housing, Cutterhead, L. H.</td>
<td>1</td>
<td>180-588</td>
<td>Key, Cutterhead Drive Pulley</td>
<td>1</td>
</tr>
<tr>
<td>180-527</td>
<td>Bearing, Cutterhead 462307 SKF</td>
<td>2</td>
<td>180-589</td>
<td>Shim, Cutterhead Knife</td>
<td>3</td>
</tr>
<tr>
<td>180-528</td>
<td>Bolt, Bearing Housing, 7/16-14 x 1¼ Hex</td>
<td>3</td>
<td>180-590</td>
<td>Jackscrew, Cutterhead Knife</td>
<td>9</td>
</tr>
<tr>
<td>180-529</td>
<td>Washer, Bear. Mntg. Bolt</td>
<td>3</td>
<td>180-591</td>
<td>Knife, Cutterhead</td>
<td>3</td>
</tr>
<tr>
<td>180-530</td>
<td>Pulley, Cutterhead Drive</td>
<td>1</td>
<td>180-593</td>
<td>Chipbreaker</td>
<td>1</td>
</tr>
<tr>
<td>180-531</td>
<td>Setscrew, Pulley ¾-16 x ¾</td>
<td>1</td>
<td>180-594</td>
<td>Bolt, Chipbreaker Mounting 5/16-18 x 1” Sckt Hd</td>
<td>4</td>
</tr>
<tr>
<td>180-532</td>
<td>Table, Planer</td>
<td>1</td>
<td>180-595</td>
<td>Handle, Chipbreaker</td>
<td>1</td>
</tr>
<tr>
<td>180-533</td>
<td>Shim, Table Adjusting</td>
<td>2</td>
<td>180-596</td>
<td>Knob, Chipbreaker Handle</td>
<td>1</td>
</tr>
<tr>
<td>180-534</td>
<td>Bolt, Shim Locking 5/16-18 x 1¼ Square H.</td>
<td>4</td>
<td>180-597</td>
<td>Pressure Bar</td>
<td>1</td>
</tr>
<tr>
<td>180-535</td>
<td>Lock Nut, Shim Locking Bolt 5/16-18 Hex</td>
<td>4</td>
<td>180-598</td>
<td>Bolt, Pressure Bar Mntg 5/16-18 x 1” Sckt Hd</td>
<td>4</td>
</tr>
<tr>
<td>180-536</td>
<td>Bolt, Shim Locking 5/16-18 x 1¼ Square H.</td>
<td>4</td>
<td>180-599</td>
<td>Adjusting Screw, Pressure Bar ¾-16 x ¾ Hex</td>
<td>2</td>
</tr>
<tr>
<td>180-537</td>
<td>Table Roller</td>
<td>2</td>
<td>180-600</td>
<td>Locknut, Adjusting Screw</td>
<td>4</td>
</tr>
<tr>
<td>180-540</td>
<td>Bearing, Table Roller Tarrington B1616-OH</td>
<td>4</td>
<td>180-601</td>
<td>Side Panel, R. H.</td>
<td>1</td>
</tr>
<tr>
<td>180-541</td>
<td>Bearing Housing, Table Roller</td>
<td>4</td>
<td>180-602</td>
<td>Bearing Housing, Cutterhead, R. H.</td>
<td>1</td>
</tr>
<tr>
<td>180-542</td>
<td>Shaft, Quik-Set</td>
<td>1</td>
<td>180-603</td>
<td>Pulley, Cutterhead, Feed Drive</td>
<td>4</td>
</tr>
<tr>
<td>180-544</td>
<td>Screw, Quik-Set Knob</td>
<td>1</td>
<td>180-604</td>
<td>Bolt, Bearing Housing Mntg. 7/16-14 x 1¼ Hex</td>
<td>4</td>
</tr>
<tr>
<td>180-546</td>
<td>Knob, Quik-Set Handle</td>
<td>1</td>
<td>180-605</td>
<td>Mounting Bracket, Feed Drive</td>
<td>1</td>
</tr>
<tr>
<td>180-547</td>
<td>Lever, Quik-Set Adjusting, R. H.</td>
<td>1</td>
<td>180-606</td>
<td>Bolt, Feed Drive Bracket ¾-16 x ¾ Hex</td>
<td>2</td>
</tr>
<tr>
<td>180-548</td>
<td>Collar, Quik-Set Shaft</td>
<td>1</td>
<td>180-607</td>
<td>Pinion, Feed Roller Gear Drive</td>
<td>1</td>
</tr>
<tr>
<td>180-549</td>
<td>Setscrew, Collar 5/16-18 x 5/16</td>
<td>1</td>
<td>180-608</td>
<td>Gear, Feed Roll Drive</td>
<td>2</td>
</tr>
<tr>
<td>180-551</td>
<td>Connecting Link, Quik-Set</td>
<td>4</td>
<td>180-609</td>
<td>Drive Sheave, Clutch</td>
<td>1</td>
</tr>
<tr>
<td>180-552</td>
<td>Pin, Conecting, Quik-Set</td>
<td>8</td>
<td>180-610</td>
<td>Collar, Pinion</td>
<td>1</td>
</tr>
<tr>
<td>180-553</td>
<td>Level, Quik-Set Adj., L. H.</td>
<td>1</td>
<td>180-611</td>
<td>Clutch</td>
<td>1</td>
</tr>
<tr>
<td>180-554</td>
<td>Setscrew, Quik-Set Adj., Level, L. H. or R. H.</td>
<td>1</td>
<td>180-612</td>
<td>Drive, Clutch</td>
<td>1</td>
</tr>
<tr>
<td>180-555</td>
<td>Link, Quik-Set Adj., Level, L. H. or R. H. ¾-16 x ¾</td>
<td>2</td>
<td>180-613</td>
<td>Bolt, Clutch Handle ¾-16 x ¾ Hex</td>
<td>1</td>
</tr>
<tr>
<td>180-556</td>
<td>Arm, Quik-Set Adj., Height, R. H. or L. H.</td>
<td>4</td>
<td>180-616</td>
<td>Bolt, Clutch Handle ¾-16 x ¾ Hex</td>
<td>1</td>
</tr>
<tr>
<td>180-557</td>
<td>Bar, Quik-Set Adjusting</td>
<td>2</td>
<td>180-617</td>
<td>Bolt, Clutch Handle ¾-16 x ¾ Hex</td>
<td>1</td>
</tr>
<tr>
<td>180-558</td>
<td>Bolt, Quik-Set Height Adj. Arm 5/16-18 x 1¼ Hex</td>
<td>4</td>
<td>180-618</td>
<td>Bolt, Clutch Handle ¾-16 x ¾ Hex</td>
<td>1</td>
</tr>
</tbody>
</table>

POWERMATIC/HOU DAILLE
PARTS LIST FOR MODEL 180–18" PLANER

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Description</th>
<th>Quantity Required</th>
<th>PART NO.</th>
<th>Description</th>
<th>Quantity Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>180-614</td>
<td>Washer, Handle</td>
<td>1</td>
<td>180-640</td>
<td>NOT PICTURED</td>
<td>1</td>
</tr>
<tr>
<td>180-615</td>
<td>Hanger, Clutch Handle</td>
<td>1</td>
<td>180-641</td>
<td>Key, Feed Drive Clutch</td>
<td>1</td>
</tr>
<tr>
<td>180-617</td>
<td>Bearing Housing, Variable Speed</td>
<td>1</td>
<td>180-642</td>
<td>Belt, Variable Speed Feed Roller 4L 620</td>
<td>1</td>
</tr>
<tr>
<td>180-618</td>
<td>Bearing, Variable Speed 206KLL & 206SZZ FAFNIR</td>
<td>2</td>
<td>180-643</td>
<td>Belt, Feed Roller Drive 5L 440</td>
<td>1</td>
</tr>
<tr>
<td>180-619</td>
<td>Shaft, Variable Speed</td>
<td>1</td>
<td>180-644</td>
<td>Belt, Variable Speed Drive 3L 500</td>
<td>1</td>
</tr>
<tr>
<td>180-620</td>
<td>Sheave, Variable Speed Shaft Drive</td>
<td>1</td>
<td>180-645</td>
<td>Bolt, Variable Speed Drive Sheave 1</td>
<td>1</td>
</tr>
<tr>
<td>180-621</td>
<td>Collar, Variable Speed Drive Sheave</td>
<td>1</td>
<td>180-646</td>
<td>Bolt, Variable Speed Slide Mounting 9/16 x 1/2 x 1"</td>
<td>1</td>
</tr>
<tr>
<td>180-622</td>
<td>Bolt, Variable Speed Bearing Housing 7/16-14 x 1 1/4</td>
<td>2</td>
<td>180-647</td>
<td>Cutterhead Cover</td>
<td>1</td>
</tr>
<tr>
<td>180-623</td>
<td>Pulley, Variable Speed</td>
<td>1</td>
<td>180-648</td>
<td>Guard, Feed Drive</td>
<td>2</td>
</tr>
<tr>
<td>180-624</td>
<td>Spring, Variable Speed Pulley</td>
<td>1</td>
<td>180-649</td>
<td>Bolt, Feed Drive Guard 9/16 x 1 1/2 Hex</td>
<td>2</td>
</tr>
<tr>
<td>180-625</td>
<td>Cover, Variable Speed Pulley Spring</td>
<td>1</td>
<td>180-650</td>
<td>Cutterhead, Direct Drive</td>
<td>1</td>
</tr>
<tr>
<td>180-626</td>
<td>Retainer Ring, Pulley Spring</td>
<td>1</td>
<td>180-651</td>
<td>Motor End Bell, Direct Drive Cutterhead</td>
<td>1</td>
</tr>
<tr>
<td>180-628</td>
<td>Screw, Variable Speed Adj.</td>
<td>1</td>
<td>180-652</td>
<td>Bolt, Side Panel Metric, 7/16-14 x 1 1/2 Hex</td>
<td>4</td>
</tr>
<tr>
<td>180-629</td>
<td>Handwheel, Variable Speed</td>
<td>1</td>
<td>180-653</td>
<td>Washer, Mounting Bolt</td>
<td>4</td>
</tr>
<tr>
<td>180-630</td>
<td>Collar, Variable Speed Screw</td>
<td>1</td>
<td>180-654</td>
<td>Screw, Variable Speed Shim Adj. 1/4-20 x 9/16 Sq Hdl</td>
<td>3</td>
</tr>
<tr>
<td>180-631</td>
<td>Bearing, Variable Speed Screw 605 Nice</td>
<td>1</td>
<td>180-655</td>
<td>Pin, Clutch Shifting</td>
<td>2</td>
</tr>
<tr>
<td>180-632</td>
<td>Mounting Bracket, Variable Speed</td>
<td>1</td>
<td>180-656</td>
<td>Motor Pulley</td>
<td>1</td>
</tr>
<tr>
<td>180-633</td>
<td>Shim, Variable Speed Slide</td>
<td>1</td>
<td>180-657</td>
<td>Collar, Indexing, Belt Drive</td>
<td>1</td>
</tr>
<tr>
<td>180-634</td>
<td>Slide, Variable Speed</td>
<td>1</td>
<td>180-658</td>
<td>Collar, Indexing, Direct Drive</td>
<td>1</td>
</tr>
<tr>
<td>180-635</td>
<td>Shaft, Pulley, Compound Drive</td>
<td>1</td>
<td>180-659</td>
<td>Housing, Index Plunger</td>
<td>1</td>
</tr>
<tr>
<td>180-636</td>
<td>Compound Sheave, Variable Speed</td>
<td>1</td>
<td>180-660</td>
<td>Collar, Direct Drive</td>
<td>1</td>
</tr>
<tr>
<td>180-637</td>
<td>Collar, Compound Sheave Shaft</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180-638</td>
<td>Setscrew, Collar 9/16 x 9/16 lg.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warranty

This machine and its component parts have been carefully inspected and performance tested at various stages of production and each finished machine is subjected to a final inspection before shipment. We agree that for a period of eighteen (18) months from date of delivery from our authorized dealer to replace, at our option, any machine (or component thereof) proving defective within the above period, F.O.B. our plant, providing such machine (or component part) is returned prepaid to our plant, or a designated service center at the undersigned, for our examination. This warranty does not include repair or replacement of motors and electrical components which are warranted by their manufacturer and which should be taken to their local authorized repair station for service. Further, we cannot be responsible for the cost of repairs made or attempted outside of our factory or designated service center without our authorization. No claims for defects will be honored if Serial No. or part has been removed. This warranty is made expressly in place of all other warranties or guarantees, express or implied. This warranty becomes effective only when the accompanying card is fully and properly filled out and returned to the factory within ten (10) days from date of delivery.

POWEROMATIC/HOUDAILLE INC
McMinnville, Tennessee 37100

POWEROMATIC/HOUDAILLE INC
McMinnville, Tennessee 37100