CLAUSING COLCHESTER

 PHASE:
CLANSTNE

dIVISIon of atlas press company

RETAIN IN YOUR FILES
THIS is your refrrence vanual
Colchester(3000 Series) 13" Lathe Serial No. 66340 to 57532

KALAMAZOO, MIC'

1 3in. x 24in. and 13 in. x sGin. HEAVY DUTY GEARED HEAD PRECISION LATHES INSTRUCTION \& PARTS MANUAL

THIS MANUAL

applies to the Clausing-Colchester 13 in $\times 24$ in and 13 in $\times 36$ in heavy duty, geared-head precision lathes.

A full understanding of the contents will help you obtain the best results from the machine and achieve the standards of accuracy available.

Our Technical Service Department is always at your disposal to discuss any problems concerning the application of ClausingColchester lathes and their planned accessories or attachments. The aim is to ensure maximum satisfaction with your lathe.

The machine serial number is stamped at the tailstock end of the bed and MUST be quoted in all communications regarding your lathe.

Due to the Company policy of continuous improvement, designs may be modified or changed at any time without notice and this manual applies only to the machine with which it is issued.

THE SERIAL NUMBER OF YOUR MACHINE IS \qquad

INDEX

SPECIFICATION 3
INSTALLATION
INSTALLING 5
LIFTING 5
CLEANING AND BOLTING DOWN 5
ELECTRICAL WIRING 7
CHUCK MOUNTING 9
LUBRICATION 9
OPERATION
DRIVE STARTING STOPPING REVERSE 11
HEADSTOCK SPEED SELECTION 12
SWING FR 12
APRON AND THREAD CUTTING 13
SETTING UP GEAR TRAIN 14
SADDLE AND SLIDES 15
THE BED AND TAILSTOCK 15
ACCESSORIES
EQUIPMENT LIST WITH ORDERING CODES 16
COOLANT SYSTEM
SQUARE TURRET TOOLPOST 17
STEADY REST AND REAR TOOLPOST FEEDSTOPS 18
TELESCOPIC TAPER ATTACHMENT HYDRAULIC PROFILING UNIT 19
RAPID THREADING UNIT 22
SPARES LISTS

This specification applies to all four standard models of the Clausing-Colchester 13 in Swing lathes as follows:
6524.13 in $\times 24$ in Straight bed lathes
6525.13 in $\times 36$ in Straight bed lathes
6526.13 in $\times 24$ in Gap bed lathes
6527.13 in $\times 36$ in Gap bed lathes

CAPACITIES

STANDARD EQUIPMENT SUPPLIED WITH THE MACHINE

Full length splash guard
Two No. 3 Morse taper centres
One centre bush
Wrenchs etc.

One $12^{\prime \prime}$ dia. faceplate
One $6^{\prime \prime}$ dia. slotted driving plate
Travelling steady rest

INSTALLATION PLAN

FOUNDATION PLAN

INTRODUCTION

Clausing-Colchester lathes are the result of half a century of concentration in manufacture of this type of machine tool. Whilst essentially precision tools intended for producing accurate workpieces, the design of robust construction and simplified controls makes these machines suitable for tooling in production work
All castings are naturally aged for at least six months to avoid possible distortion. Jigs and special-purpose machines are used extensively in our manufacturing operations to ensure interchangeability of components. Care is taken in all processes of all departments to ensure your satisfaction with the machine.
The headstock is an all-geared arrangement, totally enclosed within an oilbath and giving sixteen spindle speeds. The main spindle is precision finished from a heat-treated high tensile steel forging and is carried at the front end on Gamet high precision double row taper roller bearings of exceptional accuracy which are specially manufactured to our requirements. The rear end of the spindle is carried in a single-row taper roller bearing of similar design. All headstock spindles and shafts are carried in needle roller anti-friction bearings.

LIFTING

The complete machine weighs approximately $1,550 \mathrm{lb}$ and proper equipment must, therefore, be made available for handling this weight. All lifting and repositioning should be carried out with great care. It is recommended that a lifting bolt with clamp plates to the dimensions shown on the sketch should be used. Wind the saddle and slides towards the tail end of the lathe and fit the clamp plate securely at the point of balance of the machine.
Do not sling the machine from any other points. In case of difficulty, consult your local Clausing-Colchester agent.

LIFTING THE LATHE

CLEANING

Each lathe is delivered having all bright machined surfaces covered with a heavy protective coating. Before attempting to operate the machine remove all traces of the preservative using white spirit or kerosene.
DO NOT USE CELLULOSE SOLVENTS FOR CLEANING-THESE WILL DAMAGE THE PAINT FINISH.
When cleaning, pay particular attention to the slides and spindle nose. It is essential that the end guard be removed and the gear train carefully cleaned before operating the lathe.
All cleaned parts should then be dried using fluff-free cloth and the bright surfaces given a light coating of Shell Tellus 33 oil.

WORKING AREA

When deciding upon the position for the lathe, remember that sufficient room must be allowed not only for ease of operation but to permit the end guard to be opened, for access to the motor compartment at the rear of the cabinet base and for the servicing operations recommended.
A foundation plan is included which gives the main installation dimensions and also the recommended minimum space required for efficient operation of the machine under all conditions of working.

INSTALLING

In order to achieve the full standards of accuracy built in to your Clausing-Colchester lathe, it is essential that the machine be installed upon a solid concrete base which must be as level and free from vibration as possible. For most applications the machine will then perform perfectly satisfactorily whilst free-standing. When operating at high speed on out-of-balance work, however, it may become necessary to bolt the machine to the concrete foundation. Instructions for installation of the machine under both sets of conditions are given below.
Careful attention to siting and foundation will greatly add to the accuracy of the work produced and to the life of the machine. If the lathe must be installed above ground floor level, it is essential for best results to provide a concrete floor and to position the machine headstock as close as possible to a supporting wall or pillar. Wooden floors are not recommended because changes in atmospheric conditions which affect the floor will adversely affect the alignment of the machine. When wooden floorsiting is unavoidable, a section of the floor should be taken up and a concrete base built up to the floor level.
It is not recommended that the machine is placed on felt or rubber mats no matter what type of foundation is provided.
THE MACHINE SHOULD NOT BE GROUTED IN.

FREE STANDING MACHINES

1. Position the lathe level upon the three fixed feet (shown in the installation plan).
2. Screw down the adjustable feet to each take its share of the load without losing ground contact at any other foot. Lock the adjustable feet.
3. Run the lathe. Any evident vibration will be due to incorrect setting of the adjustable feet; and this can be eliminated by slight alteration of the setting whilst the machine is running. Re-lock the adjustable feet.
4. For all normal operating requirements, the mounting as described will give all the support necessary.
5. It is essential that the machine is correctly levelled before using it in production and each time an adjustment is made to the foundation bolts or mounting feet. A precision engineers' level should be used and readings taken across headstock and tailstock ends and then in two positions on both front and rear bed shears in a longitudinal direction. Careful attention to levelling will greatly add to the accuracy of work produced and to efficient life of the machine. If the foundation is not accurate and level it may be necessary to adjust the levelling screws provided at the base of the cabinet.

BOLTING DOWN

1. Position the lathe level upon the three fixed feet (shown in the installation plan as FF).
2. Screw down the adjustable feet to each to take its share of the load without losing ground contact with any other foot. Lock the adjustable feet.
3. Insert $\frac{1}{2}$ in diameter foundation bolts through the bolt positions provided and into cleanly drilled holes in the concrete foundation. When inserted, they should be firmly secured within the foundation before attempting to tighten the holding-down nuts.
4. Secure the holding-down bolts firmly but avoid overtightening. Bolt tension should be just sufficient to retain the machine in position without disturbing the cross-wind alignment.
5. Run the machine. Any evident vibration will be due to incorrect setting of the adjustable feet which can be remedied by slackening the mounting bolts and altering the adjustment a little at a time. Care and attention given to obtain the correct setting at this stage will be well repaid. Re-lock the adjustable feet before tightening the mounting bolts.
6. It is essential that the machine is correctly levelled before using it in production and each time an adjustment is made to the foundation bolts or mounting feet. A precision engineers' level should be used and readings taken across headstock and tailstock ends and then in two positions on both front and rear bed shears in a longitudinal direction. Careful attention to levelling will greatly add to the accuracy of work produced and to efficient life of the machine. If the foundation is not accurate and level it may be necessary to adjust the levelling screws provided at the base of the

ALIGNMENT CHECKS

When the machine is installed initially, or after subsequent re-positioning, it is advisable to carefully check the alignment of the headstock and tailstock. All machines are accurately aligned before despatch from the Works, but transit shocks may render a further checking necessary or of benefit.

HEADSTOCK ALIGNMENT

Grip a length of mild steel bar in the chuck and using keen tools take a light cut over the outside diameter for about 6 in of its length. Do not use the tailstock centre as a steady during this test.
Micrometer readings at the two ends of the turned ends of the turned diameter (at A and B in the sketch) should be precisely the same. If the readings differ, the headstock should be re-aligned as follows:-

1. Slacken the four socket-head headstock retaining screws until only finger tight. This will allow the headstock to pivot about the locating dowel.
2. Accurate adjustment for re-alignment can be made using the 'set-over' pad which is built into the underside of the headstock and rests between the bedway.
3. After alignment, tighten the locknut on each adjusting screw of the set-over pad and securely tighten headstock retaining screws.

TAILSTOCK ALIGNMENT

Place a prepared 12 in ground steel bar between centres, as shown in the sketch. Then to the top slide fix a dial indicator with its anvil running along the horizontal centre-line of the test bar. By traversing the saddle aiong the bed, an accurate check on alignment can be made.
Any alignment errors may be rectified by adjustment to the two set-over screws provided one at each side

CLAMOSNG
DIVISION, ATLAS PRESS CO. KALAMAZOO, MICHIGAN

Figure 1

1. Before installing switch panel assembly turn the reversing switch shaft (D, fig. 1) clockwise as far as it will go, and then back two "clicks" the switch is now in the off position.

Figure 2
2. Slide switch panel mounting bar (A, fig. 2) in holes in back of headstock (B).
3. Slide drum switch shaft (D, fig. 1) with switch panel into coupling (C), then align mounting bar (A) with holes in mounting plate (F) and secure in place with two $3 / 8-16 \times 2$ " screws (B). DO NOT TIGHTEN SECURELY.

Figure 3
4. Make sure selector lever (A, fig. 3) rotates freely. If binding condition occurs, loosen mounting screws (B, fig. 1) and realign, then tighten screws securely.

INSTALLING ELECTRIC CONTROL PANEL ASSEMBLY

ON
13" CLAUSING-COLCHESTER LATHES
FROM SERIAL NO. TO

April 1964 FILE NO. 13"-CC ELEC-4
5. Hold the small reversing selector lever at the front of the lathe head stock in a vertical position and securely tighten set screw (G) in coupling collar (C) to clamp reversing switch shaft.
IMPORTANT: Be sure set screw (G) is at 90° to slots in coupling.
6. Connect the six numbered wires in the conduit from the reversing switch to the corresponding numbered motor leads. Use small screws and nuts, and tape connections.
7. Bring the main electric line into the magnetic starter through a knock out opening in the top of the box and connect the wires to the correct terminals as shown in the wiring diagram inside the switch cover.
8. Make sure red control lever is in "down" or "off" position.
9. Select the speed and direction of spindle rotation desired with the spindle selector lever.
10. Move the red control lever up to start the lathe and motor. To stop the lathe, push the lever downoocontinue to push the control lever down to operate the brake and quickly stop the spindle.
11. Before changing motor speed or direction of rotation, the control lever must be returned to the "off" position.
NOTE: The limit switch incorporates a safety feature to protect the machine and operator. In the event of an electrical power failure, the lathe cannot be accidentally restarted and will not restart by itself. It is necessary for the operator to return the control lever to the "off" position, and then move the lever to the "on" position to start the lathe.
12. If spindle rotation does not correspond to selector switch notation, interchange any two line leads. If the motor does not start when the control lever is in the "up" or "on" position, or stop in the "down" position, adjust the travel of the limit switch arm on the switch lever by loosening the adjusting nut (H, fig. 1). If the brake lever at the rear of the headstock jams on the threaded end of the brake link, adjust set screw in the bracket on the switch panel to limit travel of the switch lever.

WIRING TO POWER SUPPLY
 APPLIES TO CLAUSING-COLCHESTER 13" LATHES FROM SERIAL NO.

LIMIT SWITCH
Operational
Sequence

LIMIT SWITCH A-B BUL. 801, Type ASC 3-13 (CLAUSING No. 710-027)

MAGNETIC STARTER

A-B BUL. 709 AAA Series K Size 0 Type 1 Form 2
3 Phase with Manual Resets
On 220v. - (CLAUSING No. 715-037)
Use 70A06 MAGNETIC COIL
with N-29 HEATERS
On 440v. - (CLAUSING No. 715-038)
Use 70A11 MAGNETIC COIL with N-22 HEATERS

2 SPEED, REVERSING

 DRUM SWITCHA-B BUL. 365 Size 1,
Consequent Pole, Constant Torque, 2 Point Reversing,
Drawing No. Y-18865
(CLAUSING No. 710-030)

CHART	FOR WIRE TERMINALS		
Terminal No.	Type	Usage Code	Req'd.
$833-004$	Closed End (Yellow)	\star	6
$833-008$	Open End	$\star \star$	9
$833-009$	Closed End (Blue)	$\star \star \star$	8

CHUCK MOUNTING

The A.S.A. long-taper key drive spindle nose (to LO standard) is incorporated on this machine and has been selected in order to overcome the danger of chuck or faceplate detachment when the spindle is stopped or reversed rapidly.
Before fitting a chuck to the spindle nose, ensure that the centre and centre bush have been removed. Care should be taken to make sure that the taper and the key of the spindle nose, together with the internal tapered bore of the chuck, are scrupulously clean. Any dirt, swarf or burrs on these surfaces will upset the accuracy of the machine, may prevent the correct locking of the chuck on the spindle nose and can cause irremediable damage to the mating surfaces. The spindle nose drawnut engages with the thread on the back of the chuck; and when the drawnut has been screwed up by hand, without trouble, the special spanner wrench supplied with the machine should be used to tighten the drawnut fully. It is advisable to give the stock of the Spanner wrench one or two sharp blows with a mallet to ensure that the drawnut is quite tight. Do not, however, fit extension handles over the spanner wrench for tightening purposes.

NOTE:

Should the chuck remain fitted for any length of time, the locking procedure should be repeated frequently. This is important when the machine is engaged on work which involves intermittent or heavy cutting.
If the chuck is fitted with the spindle nose still warm from operating, it is essential that the drawnut is re-tightened before starting the machine again from a cold condition.
Releasing the drawnut will free the chuck or faceplate from the taper. Care must be taken whenever this is done, however, to ensure that the chuck does not slide off the spindle nose to damage the bed or saddle. It is advisable to obtain assistance each time the chuck is to be removed.
To avoid the possibility of moving the machine from its levelled position, final locking of the chuck or faceplate should be made with the spanner wrench horizontal.

LUBRICATION

Accuracy of the work produced and long, efficient service from your lathe depend to a large extent upon the care and correct attention given to lubrication.

Periodic attention

Before the new machine is put into service all oiling points should be properly lubricated, as indicated on the Lubrication Chart which shows the attention recommended daily, weekly and monthly. It cannot be stressed too highly that all the oiling points marked with a black dot (bedway, leadscrew and spline shaft) should be carefully cleaned and lubricated every working day in order to obtain efficient operation of the lathe.
Before starting work each day run the machine at high speed for a few minutes in order to thoroughly distribute lubricant throughout the gearing. This procedure is also advised when a period of work at slow speeds is anticipated.

Lubricants

When the machine is despatched from the Works the headstock and gearbox are filled to the correct levels with the approved lubricant, as follows:-

> Headstock
> Gearbox - Shell Tellus Oil 27

Tellus oils may generally be obtained from Shell Oil Companies and agents throughout the world, but when difficulty is experienced in obtaining these recommended grades the following physical characteristics should be quoted in lubricant orders;

THE USE OF INCORRECT GRADES OF OIL IN THE HEADSTOCK AND GEARBOX IS LIABLE TO CAUSE OVERHEATING AND RESULT IN POSSIBLE DAMAGE.

Oil levels

Oil levels in the headstock and gearbox should be checked every week. When checking the levels at the sight-glass, always stop the machine and allow a period of time for the oil to settle so that a true reading can be obtained. When this procedure is not followed there is a risk of overfilling which may result in the generation of excessive heat and cause oil loss through pressure leakage.
After an initial period of service of between 150 and 200 hours of running, both the headstock and gearbox of your new lathe should be drained, flushed with clean flushing oil and then refilled to the correct level with the recommended lubricant. Thereafter, repeat the draining and oil-change procedure every three months or 500 hours of operation-whichever is the shorter period.

Saddle and Slides

A one-shot lubrication system is fitted in the saddle. Before commencing work each day, depress the lubricator button to send a full supply of oil through the oil channels along the slideways.
An oil level sight glass is provided in the front face of the saddle. At least once every week check the oil reservoir and replenish as necessary with Shell Tellus Oil 33.

LUBRICATION CHART

DRIVE

The headstock gear train is driven from a two speed electric motor through standard double vee belts and pulley drives.
When correctly tensioned, belt can be deflected $\frac{3}{4} \mathrm{in}$. when pressed at a point midlength between the motor and headstock pulleys.
After an initial period of service (between 150 and 200 hours of operation) it may become necessary to readjust the tension of the driving belt to eliminate slap, vibration or slip due to belt stretch. Tension adjustment can be made any time by screwing down the two bolts retaining the front of the motor platform. Access to these two bolts is gained from the back of the motor compartment at the headstock end of the machine after removal of the louvred cover panel.
The drive is completely enclosed in an end guard to avoid the possibility of motor failure due to chips or coolant splashing. Removal of the end guard for motor or drive attention will automatically isolate the electric power supply.

DRIVE END GEARS

STARTING

Rotation of the main spindle is controlled from the front of the headstock by means of the starting lever (1). Pull the starting lever upward. This action will start the motor through an air brake starter; the starting lever will remain in this position until it is moved downward to stop spindle rotation.
The starting mechanism incorporates a no-volt release. In the event of an electrical supply failure, the machine can only be restarted by first moving the control lever to the OFF position and then starting in the normal manner. Correct operation of the no-volt release should be checked from time to time, as described in Section ELECTRICAL WIRING.

STOPPING

To stop the spindle, return the starting lever to the original or OFF position. On direct start machines, downward pressure on the starting lever operates a two-shoe Ferodo lined brake inside the driving pulley which causes the spindle to stop instantly. This brake cannot be fitted on lathes having the Matrix clutch.

REVERSE

On machines supplied for operation on 3-phase A.C. supply (only) rotation of the main spindle is readily reversed by means of the finger-tip reversing switch (4) which is inset in the starting lever. Because of the use of the American long taper spindle nose there is no possibility of the chuck or faceplate running off when the spindle is rapidly reversed or stopped; providing, of course, that these have been correctly fitted.

HEADSTOCK SPEED SELECTION

Speed selection is by means of two levers on the top of the headstock (2) and one lever on the front (3). Each lever has two positions, providing eight spindle speeds as shown on the data plate; but this range is increased to sixteen speeds by the use of a twospeed motor. The two-speed control switch for the motor is incorporated into the headstock controls. Lever positions and a chart of the speeds are shown in the illustration.

The small lever (G) is used in conjunction with gearbox controls for reversing the direction of feed.
THE SPINDLE AND HEADSTOCK GEARING MUST ALWAYS BE STOPPED BEFORE MOVING ANY OF THE CHANGE LEVERS.

SWING FRAME

The drive from headstock to gearbox is transmitted through the train of gears on the end of the headstock, enclosed by the end cover.
The gears are fitted to a swing frame assembly which is readily adjustable to accommodate the full range of change gears available for each particular machine (see also Section GEARBOX). At each of the gear spindles a knurled handnut is fitted to enable gear wheels to be rapidly interchanged when required. Be sure to tighten the handnuts after fitting each gear wheel.

A shear pin safety device is fitted as a measure to protect against overload when screwcutting. A shear pin can be replaced easily by removing the top gear in the train, then the splined sleeve which carries the gear. The broken portion of pin may then be tapped out of the sleeve, from the side opposite to the splines. To remove the other broken portion, the shaft should be rotated until the pin hole is opposite the slot in the housing and swing frame then the broken pin may be knocked straight through and will drop out through the slot. A new pin can then be inserted and the top gear and sleeve re-assembled. When the end guard is opened the electric supply is automatically isolated by a micro-switch in the headstock.

NOTE:-The leadscrew should never be allowed to revolve except when screwcutting; it should be cleaned and lightly oiled each time before use.

GEARBOX

The standard gearbox covers a range of 45 feeds and threads (including $11 \frac{1}{2}$ and 23 t.p.i.) but does not provide metric threads. The full range of feeds and threads available are shown in the reproduction of the machine data plates.
Control of the gearbox is by means of four levers (1,2, 3 and 4 in the illustration) and the tumbler shaft (5). The tumbler shaft is provided with a springloaded plunger which engages with holes in the front of the gearbox cover to provide positive positioning and locking. The two selector levers (1) and (2) at the left-hand end of the gearbox each have two positions (A or B) and (C or D) and by manipulating these two levers in conjunction with the tumbler arm a range of 36 feeds and threads can be obtained. The remaining 9 feeds and threads of the total 45 are obtainable by substituting a 42 T change gear for the 21 T gear on the top driver position and re-meshing the train. This 42 T change gear is supplied stowed alongside the 35 T change gear on the gearbox driving shaft.
SPINDLE AND HEADSTOCK GEARING MUST BE STOPPED BEFORE ANY OF THE LEVERS CONTROLLING THE GEARBOX ARE MOVED.
A third lever (3) disengages the leadscrew when this is not actually required for screwcutting. A lever (4) situated high on the front of the headstock controls direction of the feeds, reversing them as required.

THREAD CUTTING

1. Threads available from the gearbox

The screwcutting dial on the apron has four numbered divisions and four sub-divisions marked on its surface, clearly visible from the operating position. The housing carrying this dial is located to the side of the apron and is retained in position by a knurled handscrew. When not required for use it may be swung out of contact with the leadscrew, since it is only employed when screwcutting is actually carried out.
To cut an even number of threads per inch (e.g. 12 t.p.i., 14 t.p.i.) the leadnut may be engaged at any division on the dial. For cutting an odd number of threads per inch (e.g. 13 t.p.i.) the leadnut must be engaged only on the numbered divisions. For fractional threads (e.g. $4 \frac{3}{4}$ t.p.i.) the leadnut must only be engaged at the division marked 1 on the dial.
When engaging the leadnut, care should be taken to ensure that the appropriate dial division coincides exactly with the fixed point on each pass.
The settings of gear box levers for the threads available from each gearbox are shown on the machine data plates which are reproduced in Section GEARBOX.

2. Threads not available from the gearbox

To cut special and multi-start threads which are not immediately available from the gearbox, it is necessary to use special change gears which are obtainable as extra equipment. For calculating the number of teeth in the required gears the following formula should be used:

Thread to be cut $=\frac{3 \times \mathrm{X} \times \mathrm{Y}}{10 \times \mathrm{T}}=\frac{\text { Driver gear }}{\text { Driven gear }}$
Where $X=$ hole in feed box (see sketch below)
$Y=1$ with selector levers on A C 2 with selector levers on A D 4 with selector levers on B C 8 with selector levers on B D
and $T=$ Number of threads per inch to be cut
Values for X are as follows:-

0	0	0	0	0	0	0	0	0
28	26	24	23	22	20	19	18	16

Example
It is required to cut 27 t.p.i.
The values of X and Y may be chosen from any of the relevant numbers given above; and there is no rule about the choice. If the values selected give impossible numbers of teeth, try other values of X
and Y and continue so doing until a practicable result is obtained.

Setting up gear train (27 t.p.i.)

1. Remove gear from headstock spindle.
2. Loosen swingframe (quadrant) locking nut located between swing frame and end of bed. Swing quadrant until 120T idler gear is out of mesh with gear on gearbox shaft.
3. Loosen idler gear stud nut located on inside of quadrant, slide 120T idler gear away from headstock spindle.
4. Select the proper gear for headstock spindle position (i.e. 28 T as example). Place gear in position on spindle and secure in place.
5. Slide 120T idler gear up until properly meshed with gear on headstock spindle and secure in place. For correct mesh; place piece of heavy wrapping paper (005 in . thick) between teeth of meshing gears, tighten gears in position and remove paper.
6. Check gear in position on gearbox spindle. For obtaining 27 t.p.i. it should be 35 T gear.
7. Swing quadrant so 120 T idler gear is in proper mesh with gear on gearbox shaft. Tighten in place.
8. Set gearbox levers properly, as shown on the data plate (left hand to C, right hand to B) and position tumbler to cut 36 t.p.i.
9. Check gear set-up by cutting 27 t.p.i. on scrap stock.
In the case of $27 \mathrm{t} . \mathrm{p.i}=\frac{3 \times 18 \times 4}{10 \times 27}=\frac{28}{35}=\frac{\text { Driver }}{\text { Driven }}$

Metric Thread Cutting

Compounding of the quadrant idler gear is necessary for cutting all 21 available metric threads. For this machine replace the 120T idler with a compound 127 T and 120T idlers on the quadrant.

1. Loosen quadrant locking nut located between quadrant and end of bed. Swing quadrant until 120T gear is out of mesh with gear on feedbox shaft.
2. Loosen idler gear stud nut located on inside of quadrant. Slide 120T gear away from gear on headstock shaft. Select proper gear for headstock shaft from chart, place gear in position and tighten knurled nut.
3. Remove 120T idler gear from brass sleeve. Place 127 T gear on brass sleeve followed by 120T gear. Slide sleeve with compound 127T/120T gears on idler gear stud; be sure 127T gear is next to quadrant.

M/M Pitch	DRIVER (Top)	DRIVEN (Bottom)	LEVER L.H.	$\begin{aligned} & \text { POS. } \\ & \text { R.H. } \end{aligned}$	TUMBLER
0.25*	21 T	35 T	D	B	3
0.35*	21 T	30 T	D	B	6
0.5	42 T	35 T	D	B	3
0.6	42 T	35 T	D	B	6
0.7	42 T	30 T	D	B	6
0.75	42 T	35 T	D	B	9
0.9	27 T	30 T	C	B	6
1.0	42 T	35 T	C	B	3
$1.25 \dagger$	42 T	42 T	C	B	9
1.5	42 T	35 T	C	B	9
1.75	42 T	30 T	C	B	9
2.0	42 T	35 T	D	A	3
$2.5 \dagger$	42 T	42 T	D	A	9
0.3	42 T	35 T	D	A	9
3.5	42 T	30 T	D	A	9
4.0	42 T	35 T	C	A	3
4.5	$27 T$	30 T	c	A	9
$5.0 \dagger$	42 T	42 T	C	A	9
5.5	33 T	30 T	c	A	9
6.0	42 T	35 T	C	A	9
7.0	42 T	30 T	c	A	9

NOTE:

\dagger For these threads an extra 42T gear is required.

* For these threads a spacer No. M1-565 ($\frac{1}{2}{ }^{\prime \prime}$ wide $\times \frac{7^{\prime \prime}}{3}$ Bore) is required in place of 21T gear at bottom position.

4. Slide 127T/120T gear up until 127 T gear meshes with selected gear in position on headstock shaft. For correct mesh, place strip of heavy wrapping paper (.005 in . thick) between teeth of meshing gears. Paper should fit tight between gears. Lock gear stud in place and remove paper.
5. Place 21T gear in position on feedbox shaft next to feedbox. This gear is used as spacer only.
6. Select proper gear for this shaft position from chart. It will be 30T, 35T or 42T only. Place gear in position next to 21T gear spacer. Tighten in place.
7. Swing quadrant until 120T gear meshes with outer gear on feedbox shaft. Check gear mesh (step 4) and tighten quadrant locking nut.
8. Position feedbox levers as shown in chart. Check gear setup by cutting thread on scrap stock.

NOTE:

When cutting metric threads, THE THREADING DIAL CANNOT BE USED. Close half-nut for first cut, then reverse lathe to return carriage for each succeeding pass until thread is completed.

APRON

Longitudinal and cross-feeds are selected by means of a plunger (1) shown in the illustration. Longitudinal feeds are obtained with the plunger fully extended; cross-feeds with the plunger fully depressed. A central or neutral position is also provided which is selected when neither longitudinal nor cross-feed is required.
The feeds are engaged by lever (2) which incorporates a safety device to prevent overloading. This mechanism is pre-set at the Works to trip out at 400 lb end pressure. It should give long, trouble-free service.

SADDLE AND SLIDES

The saddle is of American winged type. It is secured to the bed by means of adjustable keep strips at front and rear and can be locked in any position on the bed by means of a locking clamp. The cross slide is graduated radially $90^{\circ}-0-90^{\circ}$ each side for accurate setting of the compound slide. Large diameter micrometer dials are graduated in 0.001 in . divisions on both the slides.
An American pillar-type toolpost is fitted as standard, intended for tools up to $\frac{9}{16} \mathrm{in} . \times 1 \frac{1}{8} \mathrm{in}$.

The Bed

All lathe beds are induction hardened and ground on working surfaces. To remove the detachable gappiece on gap bed machines, simply unscrew the four cap-head screws. No dowels are fitted.

When refitting the gap-piece, first clean off the block and locating faces most thoroughly. Then fit the gap-piece in position and locate the four screws (two vertically from the top, two horizontally). Now bring up the saddle to give an approximate alignment and tighten the screws lightly. If the mating faces are properly clean the gap-piece may now be aligned exactly by a few taps in the required direction using a hide-faced mallet. Finally tighten the retaining screws securely.
The lathe bed should be cleaned down as often as possible to keep it free from chips. Use a brush for all cleaning; do not use an airblast which can drive chips under the sliding surfaces and may, also, blow away the protective oil film from working surfaces. After cleaning down, the bed should be coated with Shell Tellus Oil 33 to prevent formation of rust.

TAILSTOCK

The barrel is graduated ininch divisions and inductionhardened in the morse taper bore and on the outside diameter. All standard tang drills are driven by the tang and eject at zero graduation. A tool-height indicator line is marked on the front face of the nose chamfer to assist in setting tools to correct centre height when a workpiece is set up between centres. There are two parts to the tailstock body casting; the base proper, which slides along the bedways, and the tailstock body which may be moved laterally on the base. This movement or 'setting over' allows shallow tapers to be turned without need for a special taper attachment; maximum set over is $\frac{1}{4} \mathrm{in}$. each side of the centre line, a graduated scale is marked on the rear face of the tailstock casting. The tailstock is set over by first releasing the bedway clamping lever and then adjusting the two set-over screws fitted in the base (one at each side) for this purpose.

THE TWO SPRING-LOADED SHOULDER BOLTS HOLDING THE BASE TO THE BODY DO NOT REQUIRE SLACKENING AT ANY TIME.
Quick lever clamping is employed to lock the tailstock in position on the bedways. The tailstock barrel is locked at the required setting by a lever-operated clamp.

ACCESSORIES

A comprehensive range of accessories is available for the Clausing-Colchester lathe, specifically designed for the machine and engineered for robust service and reliability.
A brief list of these is given below and more detailed information on certain items is given in subsequent pages. All accessories listed can be fitted to the machine after it has left the Works.

COOLANT SYSTEM

The cabinet base has a built-in storage tank with a pump fitting position already provided. A pipe in the centre of the tray returns coolant to the tank and a gauze strainer is fitted to the pipe at tray level to prevent swarf and chips from entering the sump.

The jointed piping supplied with this unit is fully universal and will feed coolant to any required position. Supply of coolant is easily controlled by a balltype shut-off valve. The whole system has been designed to eliminate the leaks usually inherent in other coolant systems. Capacity of the unit is $5 \frac{1}{2}$ gallons. An electric pump of robust and reliable design is available and is wired into the main electrical panel at the main switch (see Wiring Diagram). The pump motor should never be run if the coolant sump is dry. The sump should be cleaned at frequent intervals and refilled with fresh coolant. Precautions should be taken when refilling to avoid splashing the coolant over the pump.

Soluble oil emulsions

For most work a soluble oil emulsion will be chosen, since this will almost always be adequate for the work in hand, and preferred by the machine operator. When screwing with a die-head, tapping, or reaming, some extra coolant applied locally may be required. If much work of this type is contemplated, it may be better to use an emulsion of an extreme pressure soluble oil in the machine tank. A good quality oil of this type will give results equal to neat cutting oil whilst retaining the cleanliness of soluble oil.
Good quality soluble oils should always be chosen and mixed in accordance with the suppliers' recommendations. The following grades have been tested and used in our own works with complete satisfaction:Shell Dromus Oil B-conventional milky soluble oil mixed with water in the ratio 25/30:1.
Shell Dromus Oil D-translucent soluble oil mixed with water in the ratio 40:1.
Shell Dromus Oil 908-extreme pressure oil mixed with water in the ratio 10/15: 1 .

Soluble oils and machine maintenance

No soluble oil emulsion, however good, can completely prevent rust without help from the operator. The machine should therefore be cleaned down regularly and bright parts wiped over with machine oil. It should never be left, especially over weekends or holidays, with wet swarf on the bed or slides. When the work in hand requires the saddle or tailstock to be clamped in one position for long periods it is advisable to spread a little machine oil on the bed beforehand to ensure a film of oil between the surfaces.
The tank should be emptied, cleaned out and refilled with fresh soluble oil at regular intervals.

STEADY REST

Of extremely rigid design, this attachment is very easily opened and set. Three adjustable fingers are provided, and the maximum capacity is 4 in . bar diameter.
Inserts are of sintered bronze and quickly replaced, being a press fit into the ends of the fingers.
The whole attachment is readily attached to the bed by a clamp bolt, and can be removed very rapidly when not required for use.

REAR TOOLPOST

As an aid to production, a rear toolpost is available for fitting direct to the cross slide, which is drilled and tapped ready to receive it,
Two tool positions are provided so the tool may be fitted either in conventional manner, or in the inverted position.
Using this tool post (with the tool fitted in conventional manner) left hand threads can be easily cut.
Supplied complete with all necessary fixing screws, the only fitting required is the physical bolting of base pad tc cross slide. Tee slots are provided in the base pad so that the toolpost may be adjusted in position
on the base. Maximum tool depths that can be accommodated in either position are $\frac{5}{8}$ in.
Standard wrenches and Allen keys supplied with the machine will fit all the nuts and screws in this assembly.

SQUARE TURRET TOOLPOST

To index the toolpost into any of four operating positions, the central hand lever is moved in an anticlockwise direction until distinct detents are felt. This indicates that the plunger mechanism has released the locating plunger and the indexing mechanism is engaged. When the central hand lever is returned in a clockwise direction the turret will index into the next position. A further short movement of the lever in the same direction will lock turret block to topslide.
Using the retracting plunger method of indexing, the turret block remains close on its bottom face whilst being indexed, which effectively prevents entry of chips between the locating faces. The turret block can also be swung into any position without use of the indexing mechanism.
The turret block will accommodate up to four tools or toolholders having a height up to $\frac{3}{4} \mathrm{in}$.

BED STOPS

To provide accurate and reliable means of repeating shoulder lengths, a single-type bed stop or fiveposition turret type bed stop are available as extra equipment. With these units, the saddle may be stopped in any desired position without detrimental effect on the feed mechanism.
A micro carriage stop is also available, for clamping on the front of the bedway. Micrometer control is graduated in 0.001 divisions. Hardened stop locks securely in any position.
TELESCOPIC TAPER TURNER

This attachment can be used for producing tapers up to 10° in either direction.
It can be mounted directly onto the rear of the saddle without any modification other than the fitting of a new saddle screw and nut which is supplied with the unit.
The swivel slide is graduated in $\frac{1}{4}^{\circ}$ of arc and in $\frac{1}{8}$ in. taper per foot and great sensitivity of control is obtained when setting a taper by the use of the micro adjustment screw.

The cross slide handwheel is always used to control the tool and the base slide can be adjusted along the bed so that the taper may be cut in any position.
The attachment will deal with a length of 10 in . of taper at any one setting.
After attaching to the machine, all that is required to prepare the taper turner for use is the clamping of the connecting rod in the anchor bracket by means of the Caphead Allen screw
The fitting of this attachment in no way detracts from the use of the machine as a normal centre lathe. Change over can be accomplished simply by loosening the connecting rod clamping screw and traversing the saddle towards the headstock to disengage the connecting rod from the clamp. Then remove the anchor bracket from the bed so that there is no obstruction to foul the connecting rod. By replacing the bracket and engaging the connecting rod, the taper turner is rapidly reset for use.
Great care should be taken when re-adjusting or altering the fit of the base slide in the taper turner bracket, as any slackness will result in incorrect tapers.
To fit the taper turner:

1. The saddle and cross slide are ready drilled to receive the attachment, the necessary holes being drilled and tapped during manufacture.
2. Clean down the rear end of the saddle to receive the taper turner bracket.
3. Release the locknut in the centre of the cross slide handwheel.
4. Slide the cross slide to the rear of the saddle.
5. Remove the saddle screw nut fixing bolt and withdraw the screw and nut from the rear end.
6. Insert the taper turner saddle screw and nut and secure the nut with the fixing bolt.
7. Pull the cross slide forward and engage the saddle screw in the handwheel pinion. (NOTE: The lock nut from the original saddle screw is not replaced, but should be retained in case it is needed when refitting the original screw.)
8. The slide block assembly can now be fitted to the thrust block on the rear of the saddle screw assembly. Engage the slides in the bracket and the slide block assembly on the slides. This will enable the bracket to be bolted to the rear of the saddle using the pre-tapped holes provided.
9. Finally, bolt the bottom slide extension piece to the rear of the bottom slide. Fit the connecting rod to the taper turner slide and the connecting rod clamp to the machined face on the back of the bed.

HYDRAULIC PROFILER

COLCHESTER SERIES '300' HYDRAULIC PROFILING UNIT

Designed to permit faster and moreaccurate profiling, this unit can be fitted at any time to Colchester lathes without modification or alteration of the machine. The standard equipment unit comprises four basic subunits; profile slide, tool box, the rear beam and tailstock units (suitable for round or flat masters or models) and a free-standing hydraulic power unit complete with a set of hoses. Two further units are available as additional equipment; a turret stop assembly and a facing beam; both of which are described subsequently.

Profile slide

Mounted directly on the rear of the lathe cross slide, this is an integral unit comprising the operating cylinder, cartridge-type servo valve, stylus lever mechanism and a swivelling Colchester Multi-type toolpost complete with one turning tool holder.
The complete unit can be fitted in four alternative positions; at $90^{\circ}, 60^{\circ}, 30^{\circ}$ or parallel to the centre-line of the lathe. Maximum and minimum profiling angles obtainable for each of these positions are shown on the installation drawing overleaf. A copying accuracy of $\pm 0.0005 \mathrm{in}$. $(0.01 \mathrm{~mm})$ can be achieved; the change in copy diameter at 90° is $5 \frac{1}{2} \mathrm{in}$. $(140 \mathrm{~mm})$ and at 60° is 5 in . $(127 \mathrm{~mm}$).

The main control valve is a self-contained cartridge unit secured into the profile slide casting. The stylus is mounted on the lower end of the stylus lever shaft which is retained in the outer end of the stylus lever. Height and angle of the stylus in relation to the model master is easily adjusted by hand after releasing the clamp bolt. A combined ON/OFF lever and forward feed-velocity control is mounted on top of the slide assembly. The ram has a stroke of $3 \mathrm{in} .(76 \mathrm{~mm})$ and maximum approach/retraction speed of 110 in . $(279 \mathrm{~mm})$ per minute. The low stylus pressure of only 6 oz. $(17 \mathrm{~g})$ permits soft masters or models to be used, if necessary.

Toolbox

A swivelling Colchester Multi-type toolpost allows all tooling to be pre-set and enables all such tool changes to be made rapidly without the necessity for re-setting the slide assembly. Sufficient height adjustment is provided to permit the tool to be set up for forward or reverse cutting. Tools are carried in interchangeable toolholders; and when each tool has once been set to centre height it may be removed and replaced any number of times witiout a'teration of the setting.
The toolbox is fitted on a base plate located at the front of the profile slide unit and can be mounted at four alternative positions, governed by the angle of the slide unit to the centre line of the machine. An adjusting handwheel is fitted which, through spiral gearing, provides micrometer control of the depth of cut up to $\frac{1}{2} \mathrm{in}$. (13 mm) movement of the tool box along the base slide. Three alternative sizes of toolbox base slides are available, dependent upon the size of the machine to which the unit is fitted.

SLIDE POSITION CHART

HYDRAULIC PROFILING UNIT

Rear beam assembly

The dovetail-section beam is fitted directly on the rear face of the lathe bed to provide a rigid datum surface for carrying the model (or master) parallel to the centre-line of the machine.
Two beam-brackets slide on the beam to provide the locating surface for two tailstock-type model carriers which can accommodate either round master profiles or flat templates. Both brackets are mounted and locked on the beam by means of knurled handwheels. The tailstock centre of the model carrier at the headstock end is spring-loaded, that at the tail-end is adjustable by a knurled handwheel to give up to $2 \frac{1}{2} \mathrm{in}$. (64 mm) of travel. Both model carriers are adjustable laterally relative to the machine centre-line and are locked by means of locking handles. Each tailstock housing is suitably drilled and tapped for attachment of flat profiling templates; short templates may be bolted on the tail-end housing only, longer templates should be supported at both housings. When the template is produced for support at both housings, the clamp-bolt holes should be made slightly elongated to permit small transverse adjustments.

Hydraulic power unit

This is a free-standing, combined tank and pump unit; designed to fit neatly at the back of the lathe. The motor unit is flange-mounted vertically upon the cover of the hydraulic tank. The electric pump works on $\frac{1}{2}$ h.p. producing a working pressure of $300 \mathrm{lb} / \mathrm{sq}$. in. A pressure gauge is fitted on all units. The pump and oil filters can be removed easily for inspection or servicing. Connection of the pump unit to the profile slide assembly is by means of three plastic hoses (two of large bore, one of small bore) all of which are sheathed in a single flexible conduit.

ITEMS AVAILABLE AS EXTRA EQUIPMENT Facing beam

To enable the profile slide unit to be used at 30° and parallel to the centre line of the machine, a facing beam is required. This consists of a slotted beam, or template carrier, which is mounted across the end of the saddle in the position shown in the sketch opposite. The template is fixed within the longitudinal slot and secured by the setscrews fitted along the edge of the beam. Final adjustment of the template position is made by setting the whole assembly over by means of the two micrometer adjusting screws (1 and 2). Screw No. 1 provides adjustment in a transverse plane whilst No. 2 varies the angle of the beam relative to the centre line of the machine. A pair of thumb-screws (3) are provided for locking the facing beam in the required position.

Turret stop assembly

The turret stop provides a highly effective means of turning a workpiece having widely varying diameters. The stop screws may be set to give up to five roughing cuts whilst the sixth station is set to allow the stylus to traverse the full template form.
Operation of the profile slide is by means of the control lever fitted to the rear face of the turret stop unit and movement of the lever to the left (towards the profile slide) brings the next turret stop screw round to the contact position and advances the unit. Movement of the lever to the right, or away from the profile slide, retracts the slide unit.

Mounting of turret stop

To convert the standard profile assembly to a turret stop unit, the pin retaining the feed control dial (1) is removed and the ON/OFF (retraction) lever assembly is then removed complete. A replacement keep is provided in the conversion kit; and this one must be fitted in place of the cam beneath the lever housing. Use the same two securing screws, however. The dial nut should then be re-fitted and pinned in position. The knurled lock-screw from the old lever assembly should be fitted to the new keep, as shown in the sketch. The side cover plate should next be removed and in its place the turret stop assembly is fitted, using the same four fixing screws. Now with the turret stop control lever in the retracted position, insert a spring dowel pin (5) through the underside of the hole in the stylus lever until it projects through the base of the turret stop assembly by approximately $\frac{3}{8} \mathrm{in}$. (10 mm .). The adjustable stop bracket (6) can now be fitted to the holes which are pre-drilled and tapped in the baseplate, using the screws provided in the conversion kit.

ASSEMBLING HYDRAULIC PROFILING ATTACHMENT TO LATHE

By consulting the chart shown in the sketches, the most suitable position for the profile slide assembly to produce the required work may be readily ascertained.

1. Clean out the pre-tapped holes at the rear of the cross slide and on the machined face at the rear of the bed. Mount the profile slide unit on the rear of the lathe cross slide and secure it in position with the four $\frac{5}{16} \mathrm{in}$. UNC screws provided (three screws fitted from the top, one from underneath).
2. Mount the rear beam unit on the machined face at the back of the lathe bed and secure in position using the socket cap screws provided. Before finally tightening the screws ensure that the beam is positioned parallel to the bedways; this can be accomplished by mounting a dial indicator on the rear of the saddle and with the gauge anvil running along the top edge of the beam.
3. The free-standing pump and tank unit should be positioned at the back of the lathe, toward the tailend. After inserting the hydraulic hoses into the flexible sheathing, connect up between the units. Take care to match the marks on the tank connections with similar markings on the profile slide unit. This applies only to the two hoses of equal diameter, the third (smaller) hose can be fitted only in one position. Clamp the flexible sheathing at both the pump unit and profile slide ends.
4. Fill the hydraulic tank with Shell Tellus 33 oil to the level shown on the oil-sight glass. Before use, the hydraulic system must be bled of all air and provision is made on the top and rear face of the profile slide unit for this. With the motor connected up switch on the pump, check that the control lever is at the OFF or retracted position, then partially unscrew the rear bleed plug. When all air and bubbly oil has been expelled through the bleed plug, screw it up tight. Set the control lever now in the ON or contact position and repeat the procedure to expel all air through the top bleeder plug.

Introduction

This attachment is designed to replace the existing screwcutting mechanism of the lathe. It is secured to the right hand side of the lathe apron by socket head screws and accurately positioned by dowels.
The attachment contains its own half-nut mechanism and obviates any possibility of the thread being picked up incorrectly. A threading dial is eliminated; the operator merely presses on the handle and the half-nut will engage at the correct point to pick up all American and English threads, including fractional threads per inch.
Once fully engaged, the half-nut is locked positively in mesh with the lead screw and always at precisely the same depth of engagement until disengaged automatically or manually.
When the knock-off lever encounters the stop which is fitted to the lathe bed, the half-nut is disengaged automatically, safely and with great accuracy.
As engagement of the half-nut is controlled and release is automatic, threads can safely be cut at high spindle speeds, the only limiting factors being considerations of tool life and the speed at which the carriage can be picked up without undue strain on the lathe mechanism.

Setting and Operation

The setting dial can be pulled out and turned to four different positions, the settings being as follows:
0 -"Safe". Impossible to engage half-nut with lead screw
1—Odd-quarter threads per inch (e.g. $4 \frac{3}{4}$)
2-Odd-half threads per inch (e.g. $4 \frac{1}{2}$)
4-Whole numbers of threads per inch (e.g. 8 or 13)
Move the knock-off control to the "Screwcut" position and set the adjustable stop to engage the knock-off lever so the half-nut is disengaged at approximately the required position. Now, with the tool clear of the work and the lathe running, engage the half-nut and allow the knock-off to operate. Fine adjustment may

Threads may be cut either by feeding the tool straight in or by using the top slide at half the thread angle. When using the latter method, however, allowance must be made for the fact that the tool will have moved forward by half the pitch when the thread is completed.
The tool may be allowed to form its own annular groove at the end of the cut, but should be withdrawn without delay to avoid rubbing.
It is important that the lead screw be clean and free from swarf for high speed screw cutting.

INSTRUCTIONS FOR FITTING

NEW HALF NUT

Access to the screws securing the half nut is through two holes in the main casting of the attachment.
IT IS IMPORTANT to check that synchronisation of the nut and pinion is correct and, if necessary, adjustment must be made as detailed in the Maintenance section.

Mounting Instructions

1. Remove covers from the High Speed Threading unit.
2. Remove threading dial from carriage apron.
3. Loosen steady adjusting nut (B) and slide steady (C) up slightly.
4. Fit threader over lead screw, near the tailstock end of the lathe and hold in place. Engage threader half nut (E).
5. Move carriage back until it contacts face of threader. Attach threader to apron with three mounting bolts (A). Tighten bolts just enough to hold while aligning threader.
6. Ensure half nut is fully engaged with lead screw by applying gentle pressure upwards (taking care not to deflect leadscrew). Tighten bolts (A).
7. Position Steady (C) so that it just clears lead screw (. 003 in. maximum); tighten steady adjusting nut (B).
8. On 17 in. lathes only, adjust lower steady (located next to apron) to bear lightly on underside of leadscrew.
9. Position stop bar (H) below knock-off lever (F) (about $\frac{1}{8} \mathrm{in}$. clearance) and parallel to feed rod. Locate mounting holes on lathe beddrill and tap $\frac{1}{4} \mathrm{in}$. UNC for mounting screws.
10. Attach stop bar to bed using flat head machine screws and spacers provided.
11. Note: When knock-off lever (F) is in "screwcut" position (i.e. knob moved to left) the knock-off lever should engage the stop (K) by approximately $\frac{5}{16} \mathrm{in}$. and when in the "lock" position (i.e. moved to right) it must be clear of the stop. Make any adjustment necessary by altering length of knock off lever or stop bar spacers.
12. Check the correct fitting of the threading unit as follows:-
Set the stop to engage the knock-off lever with the tool clear of the work. With the lathe running at about 300 r.p.m. and set to cut say 12 T.P.I., engage the nut, as described under "engaging the half-nut" and allow the knock-off to operate. It will be seen that the initial action of the knockoff mechanism is to rotate the locking lever clockwise and release the selector pin.
Immediately the selector pin is released it should fly out of the dial slot and the nut should disengage from the leadscrew.
If this action is sluggish it must be corrected by altering the position of the attachment on the apron in such a way to ensure that the nut is fully engaged and bearing against the front of the leadscrew (i.e. move the attachment away from the operator).

It is important to note that the half-nut has been designed so that it is thrown clear of the leadscrew immediately the slide pin is released. If the attachment is fitted incorrectly and the nut is pressing against the back of the leadscrew (i.e. tending to bend the leadscrew towards the operator) the servo action will not operate and the release mechanism is liable to act sluggishly.
This fault can be easily discovered by observing the slide pin when the knock-off mechanism operates with an increased load applied to the carriage by applying slight hand pressure to the traversing hand wheel. If the slide pin flies out of the dial slot immediately it is released the action is satisfactory, but if there is a slight pause the servo action is not operating and the nut is being forced out of engagement with the leadscrew by the safety device incorporated in the attachment.
13. After any necessary adjustments have been made, and repeated trials show that the attachment is working satisfactorily, drill dowel holes in lathe apron through holes " G " in threader, ream to dowel size and fit dowels.
14. Replace the covers and the attachment is ready for operation.

Engaging the Half-Nut

With the lathe running at required speed, hold down the handle with a steady pressure. Engagement will not be possible until the right moment, which is indicated by a movement of the handle. At this moment the handle should be depressed fully and released. If the half-nut is not properly locked in engagement, the handle will fly back and the procedure should be repeated.
The handle must be held down firmly and steadily until the half-nut engages; it should not be depressed intermittently or engagement will be delayed.
The handle must be released on engagement.
Before screw cutting, it is recommended that the operator carry out a few runs with the tool clear of the work to get the "feel" of the mechanism.

Manual Release

If it is required to cut a thread without using the automatic knock-off, the half-nut can be disengaged manually.

Safety Lock

If it is required to advance the carriage beyond the stop, this may be done without interfering with the setting, by moving the knock-off control to the "lock" position. It will then be retained in a position which will allow the stop to be by-passed, at the same time locking the attachment so that it will not be possible to engage the half-nut until the knock-off control is returned to the "screw cut" position.

Left Hand Threads

Left hand threads should be cut by reversing the lathe and inverting the tool. The lead screw can then be set to run in the normal direction of rotation and the automatic knock-off can be used. If a screw-on chuck is used, care must be taken, of course, to ensure that it does not unscrew while running.

Lubrication

Medium lubricating oil, not grease, should be used at the points indicated.
The double ball bearing on the pinion shaft is packed with grease and will not require attention.

Maintenance

Adjustment for wear in the half-nut slide is by three socket head screws with lock nuts operating on a gib on the right hand side of the attachment. It is essential, however, that this slide works freely over the full range of its travel.
Initially the attachment will either be fitted by a trained service engineer, or will be supplied with the mounting bracket drilled to correspond with existing locations on the lathe apron, but the following points should be noted:

1. When the half-nut mechanism is locked in engagement, the half-nut should be deeply meshed and the steady set to prevent the lead screw distorting upwards.
2. The half-nut should not bow the lead screw horizontally, a slight deflection away from the attachment is acceptable, but there must be no deflection towards the attachment.
3. With the cover of the attachment removed, it will be seen that a pin enters one of the slots in the control disc when the half-nut is engaged. With back lash taken up, this pin should be approximately central in the slot, with a slight bias towards the side of the slot nearest the mounting flange of the attachment. On no account must it bear against the side of the slot.

Should this fault develop through wear, it may be corrected by re-synchronizing the pinion as follows. Withdraw the pinion from the shaft after removing the retaining screw. The pinion is located on the driving collar by a pin which will engage any one of a series of holes arranged to give a vernier action. By moving the pinion round one hole at a time, the best position can easily be found by trial and error. A second pin, fitted to the reverse side of the pinion, may be used to give a further set of positions if necessary.

No other adjustment should be attempted without consulting the suppliers and the serial number of the attachment must always be quoted in case of difficulty or when ordering replacements.

CLAUSING-Colchester

PARTS SECTION

IMPORTANT:

WHEN ORDERING

1. Quote component Order Number, which is given on the illustration, for all component parts required.
2. Give component description in full, from schedule opposite each drawing.

Note:- Those component Order Numbers printed on the drawing in small type are for standard items which can generally be purchased locally; e.g. nuts, bolts, screws and washers etc.
3. Always quote Lathe Serial Number in all orders or technical enquiries. This number is stamped on the bed at the tailstock end.

Ref. Drg. STM-1A-6810

Order No. Description

 5505-1 Gear Shifting Lever R/H(Chrome)Order Noe

Description

Order No. Description
5788 * Switch Coupling Screw 72-495
5791 \# Headstock Cover Screws (9) 46-217
5798 * Brake Operating Lever Screws (2)
5804 * Pad Securing Screw 47-227 46-214
5805 * Locking Pawl Screws (2) 45-203
5808 * Lever Stop Screw 59-355
$5826-1$ Driving Shaft Gear Selector,
L.H.
$5827-1 \quad$ Driving Shaft Gear Selector
R.H.
Gear Selector
Gear Sele Gear Shifting Shaft Sliding Sleeve Shifting Lever Shaft Gear Shifting Lever Shaft L/H Gear Shifting Lever Shaft I/H
Gear Shifting Lever Shaft R/H Operating Lever Spring Switch Lever Return Spring 82-817 Gear Selector Springs (2) $82-830$
Sliding Sleeve Shifting Lever Shaft
 Switch Rod Spring 82-813
Return Spring Stud, Long Return Spring Stud, Short (ح) 569-¢8 хәчงем хәләТ двәŋ * Internal Shift Lever Washers (2) $\begin{array}{ll}5986 & \text { * Leather Washer 86-118 } \\ 5987 & \text { * Sliding Sleeve Shifting Lever Fork } \\ \text { Washer 85-695 }\end{array}$
 5830
5889
5891
5892
5893
5932
5935
$5937-1 *$
5938

Order No.	. Description
5084 S	Switch Actuating Bolt
5096 P	Pivot Bolt
5129 R	Reverse Switch Lever Bushes
5131 S	Selector Locating Bush
5188 * S	Shifting Fork Circlip (2)
5199 * S	Sliding Sleeve Fork Circlip
5214 R	Reverse Switch Coupling Collar
5218 R	Reverse Gear Shifting Lever $\begin{gathered}\text { Collar }\end{gathered}$
5280 R	Reverse Switch Coupling
5289-1 H	Headstock Cover
5315-1	Gear Shifting Forks (2)
5324 S	Sliding Sleeve Fork
5475 H	$\mathrm{H}_{\text {eadstock }}$ Casting
5439 *	Gear Shift Lever Knobs (2)
5444 * R	Reverse Gear Lever Knob
$5446 *$	Operating Lever Knob 18-833
5448 *	Reverse Switch Lever Knob
5452 * S	Sleeve Shifting Lever Knob
5468-1	Operating Lever Assembly
5475	Brake Operating Lever
5481 S	Switch Operating Lever
5486-1	Reverse Switch Lever Assembly
5502-1	Gear Shifting Lever, L.H.
5503-1	Gear Shifting Lever, R.H.
5504-1	Gear Shifting Lever, L. H Chrome)

Order No.	Description
5759-1*	Spindle screwed collar lo
	53-303
5771 *	Screwed plug retaining screw 47-226
5772 *	Stop washer retaining screws
	(2) 46-212
5778-1*	Flanged bearing securing screws (3) $47-229$
5780 *	Reverse shaft flanged bearing
	screws (2) 46-212
5782 *	Back bearing inside cover screws (3) $46-219$
5783 *	Front bearing cover screws (3) 46-213
5784 *	Back bearing outside cover screws (3) 46-213
5786 *	Driving shaft bush screw 67-419
5786-1*	Bush securing screws (2) 67-419
5793 *	Double gear securing screws (3)
	47-229
5796	Nose key securing screws (2) 45-201
5809 *	Driving plate sec. screw (3) 47-229
5841-2	Clutch driving shaft
5856	Driving shaft
5865	Inter-reverse shaft
5874	Reverse shaft
5881	Second shaft
5900	Front bearing shield
5903-1*	Brake shoes c/w linings 09-997
5910-2	Sliding sleeve
5912	Bearing spacer
5920	Main spindle
5926 *	Back bearing pressure springs (15) 82-812
5940 *	Brake shoe springs (2) 82-815
5950	Brake shoe fixing stud
5994	Inter-reverse gear stop washer
6337	Reverse shaft knurled nut
6361	Shear-pin
6372	Shear-pin sleeve

	Ref. Drg. STM-2-6810
	HEADSTOCK: Gears \& Shafts

Order No.	Description
5023 *	Front roller bearing (GAMET)
5030 *	Back roller bearing (GAMET)
5053 *	Pulley bearings 02-896 (2)
5059-2	Flanged bearing
5089	Expanding-lever bolt
5112	Flanged bearing bush (2)
5119	Centre bush
5122	Second shaft 28/40T gear bush
5126	Inter-reverse gear bush
5134	Brake shoe flanged bush
5140	Clutch driving shaft bush
5146-1	Driving shaft bush
5153	Second shaft bush (L.H.)
5160	Second shaft bush (R.H.)
5168	Reverse shaft flanged bush
5185	Centre, No. 3 morse
5191	Reverse shaft circlip 11-749
5195 *	Brake shoe flanged bush clip $11-845$
5197 *	Pulley brg. ret. clip (large)
5198 *	Pulley brg. ret. clip (small) 11-859
5205	Front bearing adjusting collar
5222	Clutch driving shaft thrust collar
5226	Driving shaft thrust collar
5229-1	Drive shaft bush collar
5238	Reverse shaft collar
5247	Screwed collar on spindle
5252	Back bearing spacer collar
5259	Second shaft bush spacer collar
5263	Second shaft gear spacer collar
5294	Front bearing outside cover
5302	Back bearing inside cover
5307	Back bearing outside cover
5326	Front bearing cover gasket
5329	Back brg. outside cover gasket
5332	Flanged bearing gasket
5347-1	Driving shaft gear, 30T

	From SER. No. 66840 To SER.No.
END GUARDS	SWING FRAME: standard

END GUARDS, SWINGFRAME - STANDARD

> Order No.
> Description

Ref. Drg. STM-10A-6810

Ref. Drg, STM-P8DA-6512/1
GEARBOX: Dominion Gears \& Shafts

Order	No. Description
6968	* Bush Locking Screws (3) 60-365
6973	* Coneshaft Collar Locking Screw 58-345
6975	* Leadscrew Collar Locking Screw 59-350
6988	* Tumbler Bearing Bush Screws (3) 45-203
7004	* Locating Strip Securing $\underset{47-225}{\substack{\text { Screws }}}$
7038	Coneshaft, C/W Bush
7044	Driving Shaft
7049	Intershaft, 14 T
7053	Tumbler Gear Shaft
7062	Tumbler Shaft 15T
7077	Leadscrew Thrust Screw
7105	Tumbler Location Strip
7313	* Feedshaft Tail-Fnd Bushes (2) 10-923
7316	Leadscrew Tail-End Bushes (2) $10-940$
7321	Feedshaft Tail-End Collar
7324	Feedshaft Coupling
7332	Leadscrew, 24 in.
7338	Leadscrew, 36 in .
7354	* Feedshaft Coupling Pin 14-659
7374	* Feedshaft Tail-End Collar Screw
7383	Feedshaft, 24 in.
7392	Feedshaft, 36 in.

\[

\]

$$
\begin{aligned}
& \text { Description } \\
& \qquad \\
& \text { Idler Gear Bush } \\
& \text { 25T Pinion Bush } \\
& \text { Apron Wormwheel Bush } \\
& \text { Feed Selector Gear Retaining Clip } \\
& \text { Interlock Lever Retaining Clip } \\
& \text { Surfacing Gear Retaining Clip } \\
& \text { Dial Indicator Gear Retaining Nut } \\
& \text { Apron Handwheel Retaining Nut } \\
& \text { Oiler Nipples (2) } \\
& \text { Handle Stop Key Locating Pin } \\
& \text { Half-Nut Handle Retaining Screw } \\
& \text { Latch Bar Securing Screws (2) } \\
& \text { Sliding Gear Securing Screw } \\
& \text { Handle Stop Key Securing Screw } \\
& \text { Gear Shaft Securing Screw } \\
& \text { Half-Nut Handle Stop Screw } \\
& \text { Half-Nut Handle Spring Tension Screw } \\
& \text { Selector Shaft Spring Tension Screw } \\
& \text { Half-Nut Handle Spring } \\
& \text { Feed Shaft Spring } \\
& \text { Half-Nut Cam Crinkle Washer }
\end{aligned}
$$

$$
\begin{aligned}
& \\
& \\
& \\
& \\
& \\
& \\
& 10-964 \\
& 10-958 \\
& 10-991 \\
& 13-784 \\
& 11-778 \\
& 13-784 \\
& 21-659 \\
& 21-673 \\
& 23-124 \\
& 24-043 \\
& 46-212 \\
& 53-305 \\
& 60-362 \\
& 53-303 \\
& 45-204 \\
& 46-212 \\
& 60-362 \\
& 60-364 \\
& 82-797 \\
& 82-078 \\
& 86-735
\end{aligned}
$$

peq ıपচIEAs : NO\&dV

Order No.

> Ref. Drg. STU-P14D-6512
> APRON: Straight Bed

* NOT on Continental lathes having metric gearbox

For wormbox details: Refer to STU-P15-6512 (Standard) Refer to STU-P15D-6512 (Clausing)

Ref. Drg. STU-P15D-6512
APRON WORMBOX: Extra

SPECIFICATIONS OF STANDARD ITEMS ARE GIVEN IN APPENDIX 1.

Ref. Drg. STU-P16D-6512
SADDLE \& SLIDES: Gap-Bed Lathes

Order No.
8573
8594
8597
8613
8621
8639

8641 | STANDARD ITEMS | |
| :--- | :--- |
| 8091 | Lubricating Connector Ball |
| 8096 | Index Ring Pressure Balls (6) |
| 8099 | Lubricating Valve Ball |
| 8139 | Lubricating Connector Ball Clip |
| 8142 | Cross-Slide Screw Washer Clip |
| 8307 | Swivel Slide Clamp Bolt Nuts (2) |
| 8308 | Cross-Slide Handwheel Nut |
| 8312 | Top-Side Handwheel Nut |
| 8320 | Lubricating Union Nut |
| 8327 | Lubricating Valve Bush Oil-Ring |
| 8328 | Oiler-Nipples (9) |
| 8475 | Cross-Slide Gib Adjusting Screws (4) |
| 8477 | Top-Slide Gib Adjusting Screws (6) |
| 8481 | Saddle Rear Strip Adjusting Screws (4) |
| 8485 | Saddle Rear Strip Lock Screws (2) |
| 8491 | Cross-Slide Gib Securing Screws (4) |
| 8493 | Top-Slide Gib Securing Screws (6) |
| 8495 | Screw Guard Securing Screws (2) |
| 8497 | Cross-Slide Keep Screws (2) |
| 8499 | Top-Side Keep Screws (2) |
| 8501 | Top-Slide Screw-Nut Screw |
| 8502 | Plunger Plate Screws (2) |
| 8505 | Saddle FrontSStrip Securing Screws (2) |
| 8509 | Saddle Rear Strip Securing Screws (2) |
| 8511 | Bed Wiper Securing Screws (8) |
| 8528 | Lubricating Union Sleeve |
| 8577 | Lubricating Plunger Spring |
| 8584 | Index Ring Springs (6) |
| 8587 | Lubricating Valve Spring |
| 8623 | Cross-Slide Screw Washer |

Description
Swivel Slide Spigot
Saddle Front Strip (A-Bed)
($\mathrm{A}-\mathrm{Bed}$) Saddle Front Strip (B-Bed) Toolholder \& Toolscrew Saddle Lock-Screw Washer Bedway Wipers, Flat (2) Bedway Wipers, Vee (2) Cross-Slide Screw Washer

Top-Slide Gib
Cross-Slide Screw Guard Cross-Slide Handwheel Handle (Chromed) (2)
 1 ANA

Order No.

Ref. Drge STM-18A-6810

Order No.	No. Description
8792 * H	* Handwheel Retaining Nut 21-687
8795 * B	* Barrel Clamp Lever Nut 22-696
8800 B	Barrel Screw Nut
8813 *	* Oiler Nipples (2) 23-124
8818 B	Barrel Clamp Pad
8825-1*	Clamp Lever Stop Pin 24-384
8830-1 T	Tailstock Set-Over Pins (2)
8835-1 T	Tailstock Clamp Plate
8844	Barrel Screw
8857-1* S	* Set-Over Screws (2) 47-231
8858 * T	* Tailstock Clamping Lever Stop Screw 73-531
$8859 * \mathrm{~T}$	Tailstock Barrel Screw Sec Screw (2) 58-343
$8860 * 5$	* Set-Over Pin Retaining Screw (2) 59-354
8885 * B	* Base Bolt Plain Washers (2) 85-695
8886 * B	* Base Bolt Spring Washers(2) 84-716
8888 *	* Clamp Plate Ret Nut Washer 85-742

\[

\]

Ref. Drge STM-19A-6810
Order No. Feedshaft 24^{n}
Feedshaft 36 Spring Washers (6) 84-706 Bedscrew Spring Washers (6) 84-706 Cabinet Base Assembly 24" Cabinet Base Assembly 30 Brack Patform Bracket Coolant Drain Filter Coolant Drain Filter Back Splash Guard Assembly 36" Splash Guard Fixed-Plate Platform Adjusting Nuts (4) 20-639 Bracket Bolt Nuts (2) 22-698 Bed Bolt Oil-Rings (6) 27-060 Louvre Plate, Boxed Motor Platforms (2-Speed) Motor Pulley Cover Plate Screws (7) 45-202 Platform Adjusting Nut Washers (4) 85-695 Motor Securing Screw Washers (4) 85-692 Bracket Bolt Washers (2) 84-704 Vee Belts A82.
FROM SER. No. 19065
TO SER. No. 67632

Ref. Drge STM-19A-6810
Order No. Feedshaft $24^{\prime \prime}$
Feedshaft 36 Spring Washers (6) 84-706
Bedscrew Spring Washers (6) 84-706
Cabinet Base Assembly 24"
Cabinet Base Assembly
Motor Platform Bracket
Coolant Drain Filter
Back Splash Guard Assembly 24"
Back Splash Guard Assembly 36"
Splash Guard Fixed-Plate
Platform Adjusting Nuts (4) 20-639
Bracket Bolt Nuts (2) 22-698
Bed Bolt Oil-Rings (6) 27-060
Louvre Plate, Boxed
Motor Platforms (2-Speed)
Motor Pulley
Cover Plate Screws (7) 45-202
Cover Plate Screws (7) 45-202 Platform Adjusting Not Wecuring Screw Washers (4) 85-692 Bracket Bolt Washers (2) 84-704 Vee Belts A82.
FROM SER. No. 19065

Ref. Drg. ACC-ST-P101-65
STEADIES (Steady Rests)

Ref. Drge STM-10/A-6810
TELESCOPIC TAPER TURNING ATTACHMENT

Order ${ }^{\text {No. }}$	Description
25206-2	Anchor Bracket
25207-0	Taper-Turner Bracket
25208-0	Cross-Slide Screw Bearings 02-872
25210-1	Slide Block
25211-0	Adjusting Screw Keep Bush
25214-0	Swivel-Slide Clamps (2)
25215-0	Bearing Retaining Clips 12-766
25217-0	Anchor Bracket Extension
25218-1	Cross-Slide Extension
25219-1	Slide-Block Gib
25220-0	Bracket Gib
25220-1	Bearing Housing
25221-1	Adjusting Screw Keep
25222-1	Saddle Screw Nut (Standard)
25225-0	Thrust Bearing Adjusting Nut 21-660
25226-1	Swivel Slide Adjusting Screw Nut
25229-1	Anchor Bracket Clamp Piece
25230-1	Connecting-Rod Clamp Pad
25231-1	Eccentric Pin

Ref. Drg. STM $105 \mathrm{~A}-65 / 1$

REAR TOOLPOST
Ref. Drg. STM-103-65/1
REAR TOOLPOST

Description
 Order No.

Toolpost clamping bolts (2)
21-661
lamping-bolt washers (2) 85-694
Tool screws (2) top
24950-0
24951-0
$24952-0$
24954-0
24955-0
24956-0
24957-0
24958-0

Ref. Drg. STM-110-65/1
COOLANT UNIT

- ON IOpIO

22446-0
22501-0
22536-0

RAPID THREADER: ENGLISH
Order No. Description

Description

Order No.	Description
20120-0	Dis-engaging lever pivot screw
20122-0	Knock-off lever pivot screw
20123-0 *	Attachment securing screw (short) $47-227$
20124-0 *	Attachment securing screws (long) 47-228
20125-0 *	Stop-bar securing screws 73-520
20126-0 *	```Spacing-block securing screws 46-214```
20127-0 *	Anchor-block securing screws 73-197
20128-0 *	Bracket securing screw 73-199
20129-0 *	Front-cover securing screws 73-472
20130-0 *	Back cover securing screws 73-472
20131-0 *	Half-nut securing screws (2) 73-196
20132-0 *	Pinion securing screw 73-198
20139-0	Dial shaft
20144-0	Slide
20145-0	Dial spring
20146-0	Main spring
20147-0	Locking-lever spring
20151-0	Top steady
20153-0	Adjusting stop
20154-0 *	Securing screw washer 85-692
20155-0 *	Knock-off lever spring-washer $84-714$
20159-0 *	Pinion securing screw washer 85-720
20163-0 *	Pinion screw spring washer 84-701
20165-0 *	Locking-lever securing nut washer

Ref. No.

01-786 Ball, steel 5/32" dia.
01-787 Ball, steel 3/16" dia.
01-788 Ball, steel 1/4" dia.
01-789 Ball, steel 5/16" dia.
01-790 Ball, steel 3/8in dia.
01-792 Ball, steel 5/8n dia.
01-793 Ball, Ph/b. 1/4" dia.
02-032 Bearing, Hoffman XLS, 2.1/4" dia.
02-061 Bearing, Hoffman XLS, $2^{\prime \prime}$ dia.
02-872 Bearing, Hoffman Al0, $10 \mathrm{~mm} \times 28 \mathrm{~mm}$.
02-890 Bearing, Hoffman S5-V3-0
02-896 Bearing, FIFNIR DN 110 or FAG 601022
$03-892$
$03-896$
Bearing, roller, $17 \mathrm{~mm} \times 40 \mathrm{~mm} \times 13 \mathrm{~mm}$ KGS taper KE 30203 Bearing, roller, $25 \mathrm{~mm} \times 52 \mathrm{~mm} \times 16 \mathrm{~mm}$ KGS taper KE 30205

04-884 Bearing, thrust Hoffman W 1.1/8"
04-905
Bearing, thrust Hoffman W.S.P. 5/8"
08-052 Bolt, Hex. head 5/16" UNC x 1.1/4" long
08-112 Bolt, Hex head 5/8" UNC x 1.1/4n long
10-006 Bush, 5/8n O.D. 1/2n I.D. C.T. $51 \times 5 / 8^{n}$ long
10-007 Bush, 5/8n 0.D. 1/2n I.D. C.T. $51 \times 7 / 8^{n}$ long
10-009 Bush, B.S. $71 \times 1.1 / 2^{11}$ long
10-011 Bush, 15/16" O.D. 3/4" I.D. C.T. $30 \times 1.3 / 16^{\prime \prime}$ long
10-012 Bush, 15/16" O.D. 3/4" I.D.C.T. $30 \times 3 / 4^{\prime \prime}$ long
10-013 Bush, 15/16n O.D. 3/4n I.D. C.T. 30×1^{n} long
10-909 Bush, 13/16" O.D. 9/16" I.D. F.C.T. $211 \times 5 / 8^{\prime \prime}$ long
10-913 Bush, 3/4n O.D. 5/8"I I.D. C.T. $174 \times 5 / 8^{n \prime \prime}$ long
10-914 Bush, 3/4́N O.D. 5/8́n I.D.C.T. $174 \times 3 / 4^{\prime \prime}$ long
10-916 Bush, $7 / 8^{11}$ O.D. $5 / 8^{n 1}$ I.D. C.T. $56 \times 3 / 4^{11}$ long
10-920 Bush, $1^{\prime \prime}$ O.D. 3/4" I.D. C.T. $18 \times 5 / 8^{\prime \prime}$ long
10-923 Bush, $1^{\prime \prime}$ O.D. 3/4n I.D. C.T. $18 \times 3 / 4^{n}$ long
10-940 Bush, 1.3/8n O.D. I.1/8n I.D.B.S. $68 \times 1.3 / 4^{n \prime}$ long
10-957 Bush, 11/16" O.D. 9/16" I.D. C.T. $40 \times 7 / 8^{\text {n }}$ long
10-958 Bush, $11 / 16^{n}$ O.D. 9/16" I.D.C.T. $40 \times 1.1 / 4^{n}$ long
10-964 Bush, 3/4n O.D. 5/8n I.D. F.C.T. $29 \times 9 / 16^{n}$ long
10-991 Bush, oilite C.T. $40 \times 1 / 2^{\prime \prime}$ long
11-731 Circlip, external, 3/8" dia. Anderton type 1500 E. 303
11-736 Circlip, external, $1 / 2^{11}$ dia. Anderton type 1400
11-737
Circlip, external, l/2n dia. Anderton type 1500 E. 396
11-743
Circlip, external, $5 / 8^{\mathbf{n}}$ dia. Anderton type 1400
11-745
Circlip, external, 3/4n dia. Anderton type 1400
11-749 Circlip, external, 7/8n dia. Anderton type 1400
11-753 Circlip, external, ${ }^{\prime \prime}$ dia. Anderton type 1400
11-754
11-77
11-845
11-859
Circlip, external, l.1/8" dia. Anderton type 1400 Circlip, external, 5/16" dia. Anderton type 1500 E. 250 Circlip, extemal, 3/16" dia. Anderton type 1500 E.125x
Circlip, external, 50 mm Anderton type 1400364
12-766 Circlip, internal, 28 mm (1.102) Anderton type 1300
12-767 Circlip, internal, $40 \mathrm{~mm}(1.574)$ Anderton type 1300
12-770 Circlip, internal, 80 mm (3.150) Anderton type 1300
$12-773$
Circlip, internal, 3.464 dia. Anderton type 1300

Ref. No.

13-784
13-786
13-794
14-103
14-104
14-131
14-613
14-643
14-644
14-652
14-659
14-644
14-668
14-686
16-842
17-001
17-002
17-009
18-145
18-830
18-833
18-835
18-836
$18-837$
$18-838$
18-840
20-612
20-614
20-621
20-622
20-624
20-635
$20-636$
$20-637$
20-639
20-652
Circlip, special, Anderton 1500 E. 468 ' E ' type Circlip, special, Anderton type 1200 size 8 int. Circlip, special, Salter No. 5101/66 ext.

Spring dowel, $1 / 8^{\prime \prime}$ dia. $\times 1 / 2^{\prime \prime}$ long
Spring dowel, $1 / 8^{\prime \prime}$ dia. $\times 3 / 4^{\prime \prime}$ long Spring dowel, $1 / 4^{\prime \prime}$ dia. x l' $^{\prime \prime}$ long Spring dowel, $3 / 32^{\prime \prime}$ dia. $x 1 / 2^{\prime \prime}$ long Spring Dowel $5 / 32^{11}$ dia. $x 1^{\prime \prime}$ long Spring dowel $5 / 32^{n \prime}$ dia. x 1.1/8" long Spring dowel, 3/16" dia. x 1^{11} long Spring dowel, 7/32" dia. x $1^{\prime \prime}$ long Spring dowel, $1 / 4^{\prime \prime}$ dia. $\times 3 / 4^{\prime \prime}$ long Spring dowel, $1 / 4^{\text {n }}$ dia. $\times 1.1 / 4^{\text {" }}$ long Spring dowel, $5 / 1^{17}$ dia $\times 1.3 / 4^{\text {n }}$ long
Handle, black, $3 / 8^{n}$ bore $\times 3^{\text {n }}$ long
Key, No. 3 Woodruff BS 404
Key, No. 9 Woodruff BS 606
Key, $1 / 4^{\mathrm{n}} \times 1 / 4^{\mathrm{n}} \times 1.1 / 4^{\mathrm{n}}$ long, round end BS 46
Knob, 1.1/4" dia. x $3 / 4^{\text {n }}$ UNC red
Knob, 1.1/2" dia. x 7/16" UNC black
Knob, 1.1/2" dia. x 5/16" UNC red
Knob, 1.1/4" dia. x 7/16" UNC black
Knob, 1.1/4n $\times 3 / 8^{n}$ UNC black
Knob, 1.1/4" $\times 3 / 8^{n \prime}$ UNC cream
Knob, 1" x $3 / 8^{n}$ UNC black
Knob, 3/4" x 1/4" UNC black
Nut, $3 / 8$ n UNC deep
Nut, $1 / 2^{n}$ UNC deep
Nut, $5 / 16^{11}$ UNC std.
Nut, $3 / 8^{\prime \prime}$ UNC std.
Nut, $1 / 2^{11}$ UNC std.
Nut, $1 / 4^{n}$ UNC thin
Nut, $5 / 16^{11}$ UNC thin
Nut, $3 / 8^{\prime \prime}$ UNC thin
Nut, $1 / 2^{\text {" }}$ UNC thin
Nut, $3 / 8^{n}$ UNF thin
21-651 Locknut, 7/16n UNF
21-654
21-659
21-660
21-661
21-673
$21-675$
21-687
Locknut, $5 / 8^{11}$ UNF
Nut, 5/16" UNC std. (Simmonds Aero)
Nut, $3 / 8^{n}$ UNC std. (Simmonds Aero)
Nut, $7 / 16^{\prime \prime}$ UNC std. (Simmonds Aero)
Nut, $1 / 2^{\prime \prime}$ UNF thin ' T ' (Simmonds type NT/D166)
Nut, $5 / 8^{\mathrm{n}}$ UNF thin (Simmonds type NI)
Nut, $5 / 8$ " UNC thin ' T ' (Simmonds $N T / N 206$)
Locknut, $1 / 2^{\prime \prime}$ UNF Philidas c / w cap
22-663
22-689
Nut, $1 / 2^{n}$ UNC Wedglok
22-690
22-691
22-696
Nut, $1 / 4^{n}$ BSW stiff
Nut, 2 BA thin
Nut, 3/8" BSF thin
Nut, $3 / 8^{\mathfrak{n}}$ UNF Philidas type JUFP/1 c/w plastic cap 495
23-124
23-826
$23-827$
Oilcup, 1/4" dia. Springwell
Nipple, grease, l/4n BSF
Oiler, $1 / 4^{\prime \prime}$ dia. Garland diaphram

Bef. No.

24-043
24-046
24-384
24-525
24-533
24-534
24-535
24-536
24-539
24-541
24-542
24-543
24-544
24-545
24-546
24-563
24-620
25-608
25-629
26-848
26-851
26-852
27-060
27-148
27-192
27-846
27-855 0il ring, Pioneer PO/23720021
27-858 Oil ring, POS/2506/MP/658
28-905
29-011
29-024
45-201
45-202
45-203
45-204
45-205
45-206
45-207
45-208
46-211
46-212
46-213
46-214
46-215
46-216
46-217
46-218
46-219
47-223
47-225
47-226
47-227
47-228
Mills pin, $1 / 8^{\text {n }}$ dia. $x 3 / 8^{\text {n }}$ long G.P. 3
Mills pin, $1 / 8^{n}$ dia. $x 3 / 4^{n}$ long G.P. 3
Mills pin, $5 / 1^{6^{n}}$ dia. $\times 1.3 / 8^{n}$ long G.P. 4
Mills pin, $1 / 8^{\prime \prime}$ dia. $x 9 / 16^{\prime \prime}$ long G.P. 3
Mills pin, $5 / 3^{\prime \prime}$ dia. x $3 / 4^{\prime \prime}$ long G.P.3.
Mills pin, $5 / 32^{n}$ dia $x 1^{n}$ long G.P. 3
Mills pin, $5 / 32^{\prime \prime}$ dia $\times 1.1 / 4^{\prime \prime}$ long G.P. 3
Mills pin, $3 / 16^{\prime \prime}$ dia $\times 1 / 2^{\prime \prime}$ long G.P.l
Mills pin, $3 / 16^{\prime \prime}$ dia. $x 1 / 2^{\prime \prime}$ long G.P. 3
Mills pin, 3/16" dia. x 5/8" long G.P.3.
Mills pin, $3 / 16^{\prime \prime}$ dia. x $3 / 4^{\prime \prime}$ long G.P. 3
Mills pin, $3 / 1^{\prime \prime}$ dia. $x 7 / 8^{\prime \prime}$ long G.P. 3
Mills pin $3 / 16^{\prime \prime}$ dia. x l' 11 long G.P. 3
Mills pin, $3 / 16^{\prime \prime}$ dia. x 1.1/4n long G.P. 3
Mills pin 3/16" dia $\times 1.1 / 2^{\prime \prime}$ long G.P. 3
Mills pin, $1 / 4^{\prime \prime}$ dia \times l.1/4" long G.P. 3
Mills pin, $3 / 16^{\prime \prime}$ dia. $x 15 / 16^{\prime \prime}$ long G.P.1
Taper pin, $5 / 32^{11} \times 1.1 / 2^{\text {n }}$ long

Oil ring, $1 / 2^{\text {n }}$ I.D. B4/1115
0 il ring, Dowty list 5 MK 26 pp 49
Oil ring, Dowty MK 7 list 1 pp 49c

Union nut, Benton \& Stone 'ENOTS' B-1731-D
Tubing sleeve, Benton \& Stene 'EMOTS' Z-103

Cap screw, $1 / 4^{n}$ UNC $\times 3 / 8^{n}$ long Cap screw, $1 / 4^{\prime \prime}$ UNC $\times 1 / 2^{11}$ long Cap screw, $1 / 4^{\prime \prime}$ UNC $\times 5 / 8^{\prime \prime}$ long Cap screw, $1 / 4^{\prime \prime}$ UNC $\times 3 / 4^{\prime \prime}$ long
Cap screw, $1 / 4^{n}$ UNC $\times 7 / 8^{n}$ long
Cap screw, $1 / 4^{\prime \prime}$ UNC $\times 1^{11}$ long
Cap screw, $1 / 4^{n}$ UNC $\times 1.1 / 4^{n}$ long
Cap screw, $1 / 4^{\text {n }}$ UNC $\times 1.1 / 2^{\prime \prime}$ long
Cap screw, $1 / 4^{\prime \prime}$ UNC x l.3/4" long
Cap screw, $5 / 16^{\prime \prime}$ UNC $\times 1 / 2^{11}$ long
Cap screw, 5/16" UNC $\times 3 / 4^{\prime \prime}$ long
Cap screw, $5 / 16^{\prime \prime}$ UNC $\times 7 / 8^{\prime \prime}$ long
Cap screw, $5 / 16^{\prime \prime}$ UNC $\times 1^{11}$ long
Cap screw, $5 / 16^{\prime \prime}$ UNC $\times 1.1 / 4^{\prime \prime}$ long

Dowel pin $3 / 16^{n}$ dia. x $5 / 8^{11}$ long BS 1804 Grade 11
Oil ring, $11 / 16^{11}$ dia. x $\cdot 103$ thick Pioneer PO/08706810
$0 i l$ ring, ${ }^{\prime \prime}$ dia. x .139 thick Pioneer PO/12510013
Oil ring, l.1/2" dia. x . 139 thick Pioneer PO/17515013

Oil ring, 5/8n O.D. x 424 I.D. x. 070 thick Pioneer P0/06204310

Rivet, $1 / 8^{\prime \prime}$ dia. $\times 7 / 16^{\prime \prime}$ long copper countersunk head

Can screw. $5 / 16 n$ TINC $\times 1.1^{/ 21}$ long

Ref No.

48-237	Cap screw, $3 / 8^{n n}$ UNC $\times 5 / 8^{n}$ long
$48-240$	Cap screw, $3 / 8^{n}$ UNC $\times 1^{n}$ Iong
$48-242$	Cap screw, $3 / 8^{n}$ UNC $\times 1^{n} .1^{n}$ long
$48-246$	Cap screw, $3 / 8^{n}$ UNC $\times 2.1 / 2^{n}$ long
$48-249$	Cap screw, $3 / 8^{n \prime}$ UNC $\times 4^{n}$ long

49-253 Cap screw, 7/16" UNC x 2^{11} long
50-260 Cap screw, 1/2" UNC $\times 1.1 / 2^{n}$ long
Countersunk screw, 10×24 T.P.I. x 1/4" long
Countersunk screw, 10×24 T.P.I. x l/2"
Countersunk screw, 10×24 T.P.I. x $3 / 4^{\prime \prime}$ long
55-318 Countersunk screw, 5/16" UNC $\times 3 / 4^{\prime \prime}$ long
55-319 Countersunk screw, 5/16" UNC x $1^{\prime \prime}$ long

$58-342$ $58-343$ $58-345$ $58-347$

Cup point screw, 10×24 T.P.I. $\times 3 / 16^{\prime \prime}$ long
$59-350$
$59-351$
$59-352$
$59-354$
$59-355$
Cup Point screw, 10×24 T.P.I. x 1/4" long
Cup point screw, 10×24 T.P.I. $\times 3 / 8$ long
Cup point screw, 10×24 T.P.I. x 1/2n long
Cup point screw, $1 / 4^{\prime \prime}$ UNC $\times 1 / 4^{n}$ long
Cup point screw, $1 / 4^{\prime \prime}$ UNC $\times 5 / 16^{\prime \prime}$ long
Cup point screw, $1 / 4^{\text {n }}$ UNC $\times 3 / 8^{\text {n }}$ long
Cup point screw, $1 / 4^{\prime \prime}$ UNC $\times 1 / 2^{\text {n }}$ long
60-361 Cup point screw 5/16" UNC $\times 5 / 16^{\prime \prime}$ long
60-362
60-363
60-364
$60-365$
$60-366$
Cup point screw, $5 / 16^{\prime \prime}$ UNC $\times 3 / 8^{\prime \prime}$ long
Cup point screw, $5 / 16^{\prime \prime}$ UNC $\times 7 / 16^{\prime \prime}$ long
Cup point screw, $5 / 16^{\prime \prime}$ UNC $\times 1 / 2^{n}$ long
Cup point screw, $5 / 16^{\prime \prime}$ UNC $\times 5 / 8^{\prime \prime}$ long
Cup point screw, $5 / 16^{\prime \prime}$ UNC $\times 3 / 4^{\prime \prime}$ long
61-376
Cup point screw, $3 / 8^{11}$ UNC $\times 1.1 / 2^{11}$ long
63-385 Cup point screw, 1/2" UNC $\times 5 / 8^{\prime \prime}$ long
64-391 Cup point screw, 5/8n UNC $\times 5 / 8^{n}$ long
67-419
$1 / 2$ Dog screw, $1 / 4^{n}$ UNC $\times 3 / 8^{n}$ long
68-428
68-430
1/2 Dog screw, $5 / 16^{\prime \prime}$ UNC $\times 5 / 16^{\prime \prime}$ long
$1 / 2$ Dog screw, $5 / 16^{n}$ UNC $\times 7 / 16^{n}$ long
72-495
Cap screw, 3 BA $\times 3 / 4^{\text {n }}$ long
73-194
Set screw, $5 / 1^{\prime \prime}$ BSW x 1.1/4" long hex head
73-195
73-196
73-197
73-198
75-199
73-472
73-473
73-489
Set screw, 2 BA $\times 1 / 2^{\prime \prime}$ long, Hollow socket
$1 / 4^{\prime \prime}$ BSW $\times 5 / 8^{n}$ long S.H.C.S.
$1 / 4^{n}$ BSW $\times 7 / 8^{n}$ long S.H.C.S.
Set screw, $2 B A \times 1 / 2^{n}$ long hex head
1/4" BSW x $1 / 2^{\prime \prime}$ long S.H.C.S.
Cheese head screw, 2 BA $\times 1 / 4^{\prime \prime}$ long

73-520
$1 / 4^{\prime \prime}$ BSF x $3 / 8{ }^{n}$ long S.H.C.S.
Flat head screw, $1 / 4^{\prime \prime}$ UNC $\times 1^{\prime \prime}$ long
73-531 Socket set screw, 1/4" UNC x 1/2" long full dog Wedglok
$73-534$
$73-545$
Countersunk head screw, 5/16" UNF x $3 / 4^{\prime \prime}$ long socket Cap screw, $8 \times 32 \times 3 / 4^{n}$ long socket head.

79-062 Oilseal, Weston W.16211237.R.
79-181 Oilseal, Weston W.B. 16911037.R. 21
79-865 Oilseal, 11/16" I.D. x 1.5/8n O.D. 5/16" wide W. 16210641 R4

Ref. No.
80-871 0ilsight, 1.1/4n O.D. Tecalemit IC. 4610
80-873 Oilsight, 1.1/2" Tecalemit IC 4612
81-159 Key, 3/16" A/F Allen Hexagon
81-160 Key, 5/32" A/F Allen Hexagon
82-063 Spring, Flexo. 163208
82-078 Spring, 707-0028 0.237 dia. x 1.1/8" free length
82-105
Spring, Flexo $825041 / 4^{\prime \prime}$ dia. $\times 5 / 3^{n} \times 1 / 2^{n}$ F.L. 6.1/2"
coils
82-132 Spring, 707-0034 1.1/64" dia. x l' $^{\prime \prime}$ free length
82-795 Spring, 707-0021, 1/4n dia. 0.D. x 1/2" free length
82-797
82-803
82-807
82-812
82-813
82-815
Spring, 1/4" O.D. x 5/8" free length

82-817
82-823
82-830
82-838
82-839
82-840
82-846
Spring, Flexo 103210
Spring, Flexo 223412
Spring, 707-0014 . 180 dia. $\times 21 / 32^{\text {n }}$ free length
Spring, Flexo 143008
Spring. 707-0015 5/16" dia $\times 1.7 / 8^{\prime \prime} 0$. A.
Spring, 707-0016 1/2" dia. x 2.3/16" free length
Spring, Flexo 62704
Spring, Flexo 123306
Spring, Flexo 112807
Spring, Flexo 112908
Spring, Flexo 93114
84-701 Washer, 3/16" dia. bore single coil locking
84-704 Washer, 3/8n dia. bore single coil locking
84-706
Washer, $1 / 2^{11}$ dia. bore single coil locking
84-714
84-716
84-71
84-725
Washer, $3 / 8^{\text {n }}$ dia. bore double coil locking
Washer, $1 / 2^{\text {II }}$ dia. bore double coil locking

85-69
85-692
85-693
85-694
85-695
$85-696$
$85-698$
85-699
Washer, 5/8" dia. bore double coil locking
Washer, Schnorr disc spring Type K. 6201
Washer, $1 / 4^{\prime \prime}$ dia. bore standard
Washer, $5 / 16^{11}$ dia. bore standard
Washer, $3 / 8^{n}$ dia. bore standard
Washer, $7 / 16^{\prime \prime}$ dia. bore standard
Washer, $1 / 2^{\text {n }}$ dia. bore x l' $^{\text {" }}$ O.D. x.092"W. standard
Washer, 1/2" dia. bore x 1" O.D. x .062"W. standard

85-720
Washer, 5/8" dia. bore standard

85-742
Washer, 3/4" dia. bore standard
-
$86-029$
$86-030$
86-11
86-119
86-735
86-738
86-740
Washer, 2 BA standard plain
Washer, $5 / 8^{n \prime}$ I.D. \times I.3/8" O.D. 15 SWG BS 3410 table 4 std.

88-070 Drain plug $3 / 4^{n}$ BSP Tecalemit $4377 / 6$

