Pride of the Shop
Self-Feed 12-Inch Pony Planer and Jointer, Circular Rip and Crosscut Saw, Band Saw and Boring Machine.

Shipping Weight
1450 lbs.

Floor Space
5 ft. 4 in. x 7 ft.

Pulley to Belt to
10 x 4 in. Tight

Speed
550 R.P.M.

Power
5 H.P.
Yes, its another edition; is there no end to this machicolation machinery madness. There are about 175 of us now. We hope to keep growing. You will also notice (if you don’t fall asleep first) that we have real photographs in this issue (we still have sketches). We hope to keep it up! (the photos that is).

IT IS TIME TO RESUBSCRIBE, THE FOLLOWING ISSUES WILL HAVE MORE INFORMATION AND PHOTOGRAPHS THAN EVER BEFORE. BUT WE WILL CHARGE $14.00, TO COVER THE COSTS AND POSTAGE.

Also back issues for newsletters 1 through 6 are ready to be mailed. If you are interested they are $12.00 for the set and that price includes mailing. If you want, you can renew and purchase the back issues at the same time with a $26.00 check.

Walt

Advertisements:

Russell Firth from Tabernacle, NJ was the first to see Doug’s ad. in the Lancaster Farmer, and the AMPTA wants to widen his market.

Doug Carroll has an extra Crescent Universal Woodworker, with the original brochure. Its in good shape and he’s asking $900. Brooklandville, MD. 21022. (301) 823-2640.

FLORIDA...Chandler Smith from 1330 Stevens Ave Deland Fl. (734-6794) is on the board of directors of the pioneer settlement for the Creative Arts. they are trying to interest local woodworkers and tool collectors in setting up an exhibit of woodworking, within the 1850 to 1950 era. If you are interested please get in touch with Chandler.

Walker Turner manuals? Does anyone have them? were looking specifically for Walker Turner wood lathe manuals for Bob Ochenas, (419) 893-6912. Bob is completely restoring his walker lathe. ATTN BOB TAKE PICTURES AND NOTES THIS WILL MAKE A GREAT ARTICLE!

Nick Nicolanti, Mantua, OH. (216) 274-2283 is selling the machine below. I’m not sure who manufactured it; however, but it looks like its in good shape. If you want a great old work horse call Nick. If you have any information as to what this thing is, call me at (412) 628-8485 evenings or (412) 382-7646 days.

(Photograph of the machine below.)
THE YATES AMERICAN J-LINE
By Cameron Brown
* 1989

In the 1950's the Yates-American Machine Co. was producing a junior line of woodworking equipment similar to the output of such firms as Rockwell-Turner, Atlas, Boice-Crane, and Delta-Rockwell International. One of the major sales outlets was the Brodhead-Garrett Co. of Cleveland, an industrial arts supply house. In their catalog of 1955-56, Brodhead-Garrett stated that they had been in business 52 years and the Yates-American J-line machines offered were the:

- J-120, 20" bandsaw
- J-131, 8" hand jointer
- J-140, mortiser
- J-145, oscillating spindle sander
- J-147, 16" disc sander, available as double disc, single disc, disc and belt, or single belt (6" x 59")
- J-150, single spindle shaper, w/ 1-1/8" DIA detachable spindle, with a 30" X 38" monolithic cast iron table, w/o a miter slot
- J-170, 12" swing speed lathe
- J-180, 18" X 6" single surfacer, direct-motor drive and offering a feed rate of 10 to 55 feet per minute

All of these machines had distinctive oval bases with a base mould of a darker color. Also available in this era were a table saw, similar in capacity to the Uni-saw, and the J-151 shaper, virtually identical in appearance to the Delta heavy-duty, but inexplicable weighing 120 pounds less. On both these later machines, the arbor/spindle was raised and lowered on gibbed dovetail ways.

Eventually Brodhead-Garrett purchased the J-line and marketed it under its own name. In 1978 the J-line designs were sold to Vega Enterprises. In 1980 the parts inventory was also sold and the parts inventory in its original entirety ceased to exist.

The major reason the J-line was discontinued was that it became too expensive to produce the casting and meet the EPA's new regulations for emissions at steel mills.

Yates-American stocks no parts nor manuals for the J-line. Brodhead-Garrett still has some owner's manuals and exploded parts drawings for the J-line and now the AWPTA has copies of these manuals. Vega Enterprises stocks no Yates-American parts but they referred me to White Machinery and Manufacturing, Zanesville OH. (614) 453-5451, which stocks a few parts for a J-line metal shaper.

A note from D.E. Fiedlerjohn, product specialist with Rockwell International, in Fine Woodworking 145, pg 18, revealed that the now Delta International parts depot in Memphis stocks parts for the J-line single surfacer. I would like to acknowledge the assistance of Mike Haus, Yates-American Co.; Anne K. Butler, Research Department, Greater Cleveland Growth Association; Vega Enterprises; Delta International; and John Andreasen, Sales Specialist.

Brodhead-Garrett
223 So. Illinois Ave.
Mansfield, OH 44905
(419) 589-8222
1-800-321-6730 (Outside OH)
1-800-362-8915 (Inside OH)
Initially, when you think of scraping you think Babbitted bearings. But every machine tool receives some scraping; parts such as adjusting screws, lead screws, guides, fences, ways, and all bearing surfaces which wear (unevenly). Hand scraping is a common method to reduce a small amount of metal. It's relatively an inexpensive way to align bearing surfaces, but a pain in the gluteus maximus. Since we'll be scraping cast iron, a typical cut of metal per stroke will be from .0001" to .001". That's what I thought - why bother, I'm not looking for a job at Colonial Williamsburg.

Make a sketch "top view" of the part to be worked, and make several copies (at least 10). You will need some basic tools - Good ones. I'm not sure how many because I haven't finished this article yet. First you will need a good machinist level to level the bed or main casting. Make sure the level, leveling surface, and bearing surfaces are clean. Adjust the leveling screws or wedge the machine as appropriate, to reduce warping. It may even be necessary to scrape some bearing ways to get a true level.

You'll need a good parallel (leveling straight edge) also, one that is several inches longer than the width of the surface to be machined. If you don't use very accurate tools may you or you may be convicted and sentenced to a life of frustration. The parallel is applied to the surface to in several directions. In fact with a lamp placed behind the parallel you will be able to see the photons emerging under it, even if the gap is only 0.0001".

Marking mediums are also used to quickly locate the spots. Check the surface if there are any obvious high spots you should take them off with a disc grinder, but make sure they are definite high spots. A flat file can also be helpful here - take your time and do not over file or grind. (Remember these tools are your friends but they can become your enemy should you get excited and over do it.)

Marking compounds or mediums are used to locate high spots, low spots, and even cracks. (Sometimes after apply a marking compound, you may notice that it appears to bleed out if you look closely (with a magnifying glass) you may notice a crack, which may need to be fixed.) Compounds such as Prussian blue, Persian red, Jeweler's rouge and lamp black are used to locate deviations on the surfaces. There are other compounds, some are poisonous like red lead.

Both Prussian blue and Persian red can be purchased at art supply stores, in a paste form but have to be thinned out just enough to facilitate application (for until your comfortable with working it), but you don't want it running all over the surface. Commercial compounds are premixed and ready to use, if you can find them and want to pay extra.

Jeweler's rouge can be mixed with machine oil with some effort, until it has a light paste like consistency. Indian red can be added to enrich the red or lamp black or Prussian blue can be added to make a darker red.

Mix up a compound that is highly visible on your working surface. You can apply the compound to the bottom of your leveling straight edge tool or to the machine surface. Apply a thin even coat of the compound with your fingers ensuring there is no grit or metal fillings. Take the parallel with one hand and move it back and forth (using a one inch stroke). Let the weight of the tool do the work. You can use your leftover hand to guide the parallel. Make four passes over the surface in different directions. Preferable: forward, at a 45° angle, backward, and across. Keep rotating the direction and don't rub the parallel or apply uneven pressure. It's easier to walk around the machine, and pull the parallel toward yourself. I think this process was referred to as spotting. Obviously the high spots will be the areas were there is hardly any marking compound. Now sketch these areas on a copy of your "top view" and get ready to scrape, or grind. Always compare the latest sketch with the previous ones to ensure your removing metal in the right places.
Scraping tools are available commercially, but they can be made from old files (the tools, not the paperwork). Anderson Brothers Manufacturing Co. of Rockford III., used to make scrapers I’m not sure if there still are. Carbide tipped scrapers are available they hold there edge longer, but they are more expensive and tougher to sharpen.

Grind the scraper edge flat (use a fine stone). Be careful not to draw out any temper (in the tool, and try keeping a lid on your own). Never let the tool get warm to touch. If you take your time you will be rewarded, if you get in a hurry and heat the tool and it loses it’s temper. Then you will have to continuously regind and sharpen it, but you obviously need the practice. While grinding the blade smooth make sure there are no pits, if the blade does pit and it continues pitting, it is not tempered right because its to brittle.

Polishing the flats to prevent pits

Enlarged theoretical form of honed double edge blade.

Side view of scraper blade applied to a work surface and held at scraping angle.

Once you have a good edge, to prevent it from pitting, polish it about 1/2” back from the edge with an oil stone. Periodic polishing will keep the tool sharp and prevent it from chipping.

Now hone the blade at a 5° to 25° degree angle from vertical. The harder the surface to be scraped the steeper the angle.

Scrape with two hands, (if your right-handed) use your right hand and body to push the scraping tool, and use your left hand to hold the scraper down. (If your left-handed, I don’t know what you should do). The attack angle can vary: the smaller the angle between the tool and the working surface the more metal will be removed. Scrape in different directions to avoid chatter marks. If the surface is badly worn, you can make longer and deeper cuts and rough out the surface being careful not to undercut or you will have to rescrap the entire surface. Finish with short strokes and fine scrapes.

If you have to remove more than 0.005” of metal, there is no sense practicing for a urine test use a hand held grinder, or power scraper if you can get a hold of one. If all else fails you can always have it milled or planed down.
"Angle Irons," was how Office Manager Donald P. Jenkins referred to the early machines made by the Parks Woodworking Machine Co. (formerly the Parks Ball Bearing Machine Co.) of Cincinnati, OH founded in 1887 (See news letter no. 7).

These first machines of Parks are distinguished by having an open frame work of angle iron giving the machines the appearance of leering skeletons or steel spider webs. Even so, the machines are definitely not flimsy.

The early company catalogs continually stressed the "five Points of Superiority" of the angle irons — "Rigid, Strong, Durable, Low Price, and Portable."

Circumstances had forced founder L.F. Parks to build his Prototype machines with the tools and materials that could be found around backwoods Kentucky sawmills in the 1870s and 1880s which would explain his attraction to welded angle iron. Catalog H, circa 1922, explained that: "Parks Woodworking Machinery have always been designed for utmost strength and least possible weight. For this reason we selected angle-steel for Parks framework-construction, being the first manufactures to use this type of frame in woodworking machinery."

The catalog goes on to sing the praises of this "high-tech" material. "Angle-steel has made possible many modern engineering feats because of its extreme strength for minimum weight. Angle-steel is the framing gigantic 54-story skyscrapers, 500-foot steel bridges, and 1,000-foot steel trestles. It is unexcelled as framing for woodworking machines."

In the late teens or early 1920s Parks adopted the electric-welded joint increasing the strength of the machines by making every single unit an integral part of the entire frame and eliminating vibration. The frames and parts were considered so durable and so carefully designed and assembled that Parks guaranteed every machine for ten years against all defects in material or workmanship. Times have changed. The Parks Warranty now lasts only one year.

Because angle iron is light but strong Parks machines could easily be moved from job site to site. "Long bases," says Catalog E, circa 1925, also "allow the engine to be set in the rear where it is easy to get at to keep it in good running order, where it is away from saw dust, and where a long belt drive can be secured—giving more power."

Parks was competitive because the angle iron parts were all standard. "Quantity-production," also states Catalog A, circa 1927, "large
out-put, and our policy of "Small profits but many sales" give Parks purchasers unequaled value for their investment. We pass on to you the benefits of our ability to make a better machine at unusually low cost in a most attractive low price.

The earliest Catalog in my collection lists twenty-six flat belt drive angle-iron machines. Though called the Parks Ball Bearing Machine Co. only one machine had ball bearings -- the model 25, 11 inch Simplex lathe. By 1927 it too had reverted to high speed babbit bearings.

The machine line consisted of 11, 13, and 16-inch lathes, a foot powered mortising and tenoning machine, (Dana has such a machine in his collection and the newsletter will carry a separate article on it.) 12-inch jointer, a combination 12-inch jointer/planer, a 20-inch planer, rip and cross cut saws, 18, 22, 30, and 36 inch bandsaws, four large combination machines, swing cut-off saws, 24 and 36-inch self feed drum and thickness sanders, an endless belt sander, a 24-inch economy sander, an upright hollow chisel mortising and boring machine, and a quick reverse spindle shaper. The jointers and planers were equipped with round heads.

By 1927 the line had been enlarged with the addition of the No. 10 and No. 12 Cabinet Shop Specials, the No. 16 Carpenter Shop Special, the No. 20 and No. 21 Daisy 6 and 9-inch jointers, the No. 18 Dixie Rip and Crosscut saw, the No. 99 and No. 100 Clipper Cut-off and Ripsaws, the No. 139 Sterling Upright Hollow Chisel Mortising and Boring Machine, and the No. 170 Ohio Flexible Endless Belt Sander. Dropped from the line was the Model No. 138 Peerless Flexible Endless Belt Sander. Of the 33 machines eleven were now offered with electric motors and only one had ball bearings -- the Carpenter Shop Special.

NEXT ISSUE.
About this time Parks entered the home shop field offering various smaller angle irons, the Parks Home Shop System "has been designed," states a leaflet laid into Catalog A, circa 1927, "to meet almost every situation, whether you are starting without any equipment or wish to add more machines to tools you already now have. If you already have a motor or gas engine you can belt up the Parks Home-Shop handily."

The machines were made so that accessories such as grinding and buffing wheels and dado molding heads could be put on the machines increasing their usefulness. Machines could be added to machines creating combination units.

The line of blue-gray machines consisted of the No. 43 Manual Trainer, an 11-inch foot powered bandsaw for $27.50; the number 44 Manual Trainer, 11-inch belt power bandsaw for $25 to which the No. 25 11-inch Simplex lathe could be attached; the No. 520 Hummer, a 6-inch bench table saw for $25; and the No. 460, consisting of an 11-inch bandsaw, the 11-inch lathe, and a 1/4 h.p. motor for $70.

"To every instructor and every student—who is interested in having a

Century

30-Inch Band Saw Machine

SPECIFICATIONS

- **Frame:** Heavy 3-inch angle steel, electric-welded together. Bases are heavy channel and welded to frame.
- **Bandsaw:** 30-inch swing, cuts to center of 60-inch circle.
- **Table:** Measures 20 x 24 inches, stands 40 inches from floor and can be tilted for sawing bevels.
- **Saw Guides:** Has two saw guides, upper guide has ball-bearing disc and can be raised to saw material up to 5 inches thick.
- **Band Saw Wheels:** Are 30 inches in diameter by 1 1/4-inch face, are covered with endless rubber bands and take saw 16 feet long. Upper wheel has tilting adjustment on top for leaning saw with proper tension against guide. Adjustment is made while saw is running.
- **Shaft:** 1 1/4 inches in diameter, 4-inch full ball-burnished bearings and 12 x 3-inch tight and loose pulleys and belt shifter.
- **Shipping Weight:** 700 lbs.
- **Floor Space:** 3 ft. 6 in. x 3 ft.
- **Tight and Loose Drive Pulleys:** 12 in. dia. x 3 in. face.
- **Speed:** 400 R.P.M.
- **Power:** 1/4 H.P.

No. 11-46—Century 30-inch band saw machine complete with one 3-inch band saw.

Price: $100.00

How to Braze Band Saws

First:

File each end of the blade level to make a lap joint. This bevel should extend back about two teeth.

Second:

Place the blade in the clamp at the end overlapping in the center of the clamp. Put a little powdered borax between the lap and then insert a small piece of silver solder on the side of the blade to be marked.

Third:

Have the brazing tools to a good red heat and press the joint with force, holding the tongues steady with a strong pressure until the tongues become a dull red. Then slide the tongues along the blade, back and forth a few times to insure a uniform bronze.

Fourth:

File the joint to the same thickness as the other part of the blade, paying particular attention to the teeth to see that they are in proper condition.
home work shop, this compact low-priced outfit will have a special appeal. These machines are not toys to be used a short time, but real, serviceable machines backed by the Parks ten year guarantee.

The 20-inch Endurance single surface planer Model No. 117 is a typical example of the angle-irons. Selling for $340 in the 1920s the frame was constructed of heavy channel iron electric welded and re-inforced at all stress points. "This construction," says Catalog H, "assures a maximum of strength and convenience of operation which is not obtained in the heavy cast iron planers."

Weighing some 1400 pounds the planer can dress 20X8 inch lumber. The iron table is cast in one piece and machined perfectly level and smooth and provided with side gibs for taking up wear. The self-feed, two speed machines gears are machined and guarded. The feed rollers are machined from solid bar steel. The front in-feed roller is fluted for positive feed. The rear feed roller is machined and turned true and smooth. The upper pressure rolls are equipped with compression springs. The table is provided with four idler rollers, one on each side of the table and two directly under the feed rollers.

The bearings for the cutterhead are cast in the frame. Filled with high speed Babbitt the 5-inch bearings are provided with self-oiling caps.

The round cutterhead and its pulley are machined from one solid bar. The three knives are held firmly with planer bolts. Chip clearance is provided and the knives are fitted in milled grooves. There is no shearing action or strain on the knives and they can't work loose.

Discontinued in the early 1940s Parks no longer supplies replacement parts for the angle-irons other than standard ball bearings, saw blades, and some planer-jointer knives.

In order to prepare a definitive history on American Manufactures of wood working machinery, Dana is interested in acquiring by loan, photocopy, or purchase (as a last resort!) any and all documents, catalogs, manuals, photos, etc. pertaining to the Parks Woodworking Machine Co. angle irons. Write to: Dana Martin Batory, 402 E. Bucyrus Street, Crestline, OH 44827.

Self-Feed Double Drum Sander.
Bill has built a phase convertor like the one described in AWPTA journal #9, page 3, for about $50, he says it works just fine. Here’s another approach it will cost about $150 to $250.

Well if you’re an electrician you may want to try building this 3-phase convertor. I used old parts like capacitors, switchgear, and circuit breakers. Just make sure all the parts are clean and operate smoothly. The only part you have to buy new is the 350VAC potential relay (General Electric 3ARR3 FJ4EM2 Relay, 6X559). Please read the article in newsletter 9, page 3, for additional information, and see the schematic below for wiring a 15 Hp convertor that will run 30 to 45 Hp of machinery.

How to start the 3-phase convertor. Press the start button.
How to stop the 3-phase convertor. Press the stop button.

To build this unit you need power from a 220VAC line with a ground wire. Which goes through a circuit breaker (I have two breakers shown). You then feed the power to a Power Contactor (This is a big relay.) The power contactor must have two 50 amp contacts and two 1 or 2 amp contacts. Usually, there are three power, and four control contacts.

One side of the input power goes to power contactor’s coil. The other side of the input power goes through a start/stop switch and one of the control contacts of the power contacts. It is connected so that power is supplied to the coil when the start button is hit and power from that same input line is fed though a control contact (on the power contactor which is now closed) through the closed stop switch and back to the coil.

When you hit the stop switch it actually opens the circuit to the power contactor’s coil, thus opening its’ contacts and interrupting power. (NOTE: If you hear a loud humming or buzzing noise one or more of your relays are rusted, clean the iron bar around the relay’s coil, it is not fully closing because of rust build up.)

The potential relay senses when the voltage in the third leg of the starter motor is up to full power. The coil of the potential relay is feed by one of the input lines. After it has gone through the power contactor. (I use the other line, the one not connected to the start switch.) I feed this line through a set of control contacts on the power contactor to the coil of the potential relay. This causes the power to be cut off here when you hit the stop button.

The second line feed to the other side of the coil of the potential relay comes from the third wire of the starter motor. When the motor starts to turn an AC voltage is generated here on the third leg of the motor when the voltage is high enough the potential relay kicks out the capacitors through the 15 Hp contactor or relay.

Take the same two lines that feed the potential relay and feed them to the 15 Hp contactor or relay. HOWEVER, connect one directly to the coil and the other through the normally open (NO) contacts of the potential relay then to the other side of the coil.

There are two power lines that come thru the power contactors connect these two to legs one and two of the starter motor.

Also connect line one (after it goes through the power contactor) to the contact(s) of the 15 Hp contactor or relay. Connect the other contact to about 1410 microfarads of electrolytic (starting) capacitors. Connect the other side of the electrolytic (starting) capacitors to the third leg of the starter motor. (NOTE: Use about 100 microfarads per horsepower of the starter motor. I wired 10 capacitors in parallel which were rated for at least 230 VAC).
These start capacitors change the phase of the line current (by 90°). Its this change in phase that causes the motor’s rotor to start turning. Once the rotor gets up to speed the single phase alternating current will be more than sufficient to keep the rotor turning. Then the starting motor becomes a rotary transformer, producing 3-phase power.

When you hit the start switch your power contactor closes and your motor starts to turn. When it gets to about full speed the potential relay kicks out the 15 Hp contactor or relay which in turn disconnects your starting capacitors (This is very important, because these are made for dc current and any more than 4 or 5 seconds of ac current they begin to “explode” (bake extremely fast); thus ruining the start up operation) (You will notice a loud popping noise should your potential relay or the 15 Hp relay get stuck closed). Your starter motor will remain free spinning until you turn it off.

Your convertor will start and run your older machinery now. BUT, we will add some RUNNING capacitors. First you must catch these bastards. Catch about 200 microfarads worth or 15 to 20 microfarads per horsepower of the starter motor. These run (oil filled) capacitors are huge, and should be rated for at least 300 VAC. That's why we do not use them as starting capacitors, you could but it would take up to much space. You can get these at most junk yards or salvage yards. (I wired in parallel two 50s, two 35s, a 15 and a 10 microfarads)

IT IS REALL IMPORTANT THAT YOU CONNECT THESE TO THE SAME TWO LEGS OF STARTER MOTOR THAT THE STARTING CAPACITORS ARE CONNECTED. THESE RUN CAPACITORS ARE ALWAYS CONNECTED TO THE STARTER MOTOR.

They provide a balanced continuous source of phase shifted alternating current. This is needed to run the new 3-phase motors, because they are not overrated like their predecessors.

These run capacitors also help your motor come up to speed faster reducing the chance of overheating the starting capacitors.

The three wires of the starter motor are then run to a bus line or hard wired into your 220 VAC 3-phase machinery. ALWAYS CHECK THE ROTATION OF YOUR EQUIPMENT. IF IT IS RUNNING BACKWARDS SWITCH ANY TWO WIRES OF THAT SPECIFIC MACHINE.

Now once this starter motor is running and your start capacitors have kicked out you may begin to start other motors. But You can only start a motor that has less horsepower than your convertor motor. HAPPY MOTORING!!!!!!!
Locking mechanism:

1. The vertical adjustments are at a 45° angle; there is no
 height adjustment; they are different from the vertical table
 height adjustments. On the cutter head, the indexed and uncropped tables in the horizontal position of the cutter head are on the back of the machine. These function is to lock the base casting. On machine parts marked by American these handles

NOTES:
1. These handles are threaded to a rod that passes through
2. Table raise (see horizontal)
3. Table adjustment
4. Table

18" Cresent Jointer
18" CRESCENT JOINTER.

BABBITT BEARINGS

OUTFEED

INFEED

STRAIGHT LINE MILL NURS

4" DIA WIDE END MILL

GRADUAL WARP OVER SURFACE OF +w - \frac{1}{16}w

THIS NEEDS TO BE MEASURED, OR GRIND

IN SUSP - FLAT.
Yes you jigsaw nuts that exactly what this machine is. Bill Kaline is about to be thrown out of his community, the reason - noise pollution. This is definitely a RPB Jigsaw. It is a Jones Superior Machine Company No. 46. USA 36" jigsaw. Bill says its almost identical to the one featured on the 1988 Woodworkers Calendar produced by Woodmachine Co. of Mebane, N.C. If you have any info on the Jones Co. or the jigsaw call me (412) 628-8485/ 382-7646, or Bill in Whittier CA, (213) 693-4320.

NEW TEACHERS

Joel Puckett, Rt 2, Box 455, Perryville, TN 37141
Boulder Machinery, 2400 Apache, Boulder, CO 80302
Bellows Sawmill Company, 311 Third Sinerd, Annapolis, MD 21403
James Herre 3519 North 50th St., Milwaukee, WI 53216
Paul D. Wright, 12370 NW 29th St., Sunrise, FL 33323
Ray Beatty, Form 2100 Robin Dr., Auburn, IL 61002
John C. Adderly, Box 170, Linton, IN 47441
James Gregg, Rt. 8, Box 232-C, Greenville, TN 37745
Michael Rendall, 12250 Orchard, Ave. SE, Okemos, MI 48865
J.L. Whitfield, Box 115, Stonning, CT 06378
John H. Gleason, Box 2771, Sincere, NY 13220
Nisan Dudley, Szes Jr., 10466 Florence Ave, Silver Spring, MD 20901
Daniel H. Turner, 407 N. 9, Box 3332, E. Stroudsburg, PA 18301
Vincent Pepe, 26 Clifton Ave., Rensslaer, NY 12144
David Subling, Box 188, Lenox Hill, NY 10021
Eben H. Scammon Jr., 21 Whitehall Rd., Ancsbury, OH 44413
Charles Kaplin, 1734 Latrobe Rd., Santa Monica, CA 90402
Matthew S. Neuman, Box 46 Scott Rd., New Brantmore, PA 15311
W.L. Vincent, 2356 J. Johnson Rd., Pittsburgh, PA 15237
Charles E. Wilson, Box 273 Stafford, CT 06075
Edward T. Fleming, 41 New Flushing Rd., West Townsend, MA 01474
Chandler Smith, 1230 Stevens Ave., Deland, FL 32728
Robert D. Krupp, 306 N. 3rd., Manhattan, KS 66502
Ferdinand F. Fournier, 152 Edgewood Ave., Bridgewater, NJ 08807

Ray Impold, 15 Union Street, Camp Hill, PA 17011
John Udneson, 39 Rambleside Dr., Hersfield OH 44907
Ideal
12-Inch Jointer.

The mailing address is: Antique Woodworking Power Tool Association
P.O. Box 1027
Connellsville, PA 15425

Our Subscription is $14.00