From the editor.

This took a little longer than I expected to put together but there is a lot of information packed inside. If you read the latest issue of Fine woodworking (Jan. 1989) page 14, you'll see a write-up of AWPTA. I would like to thank Dick Burrows. We are starting to get responses from the press release.

Dana Martin Batory spoke with Lewis Lorini of "Woodshop News" they are interested in trading newsletters. Woodshop News is very informative and interesting there number is 1-800-444-7686.

Walt

NEW MEMBERS:
Samual Cowles, Route 4, P.O.Box 296, Hedgesville, W.VA. 25427
Ron Johnson, 4823 Revere Road, Durham, NC. 27713
Adrian Van Dyk, 817 3rd Street, Marietta, OH. 45750
Dan Migichelbrink, 3234 Myersville Rd., Unionsontown, OH 44685
Michael Ribley, 2256 S. Emerson Street, Denver, CO. 80210

Comments/Classified:

Dick Downing: Dick has 100% restored a 1905 modal 58 UWW. with a 32" bandsaw, 14" tablesaw, vertical shaper, horizontal borer, 12" jointer, and wood lathe. The unit is powered by a 5hp 1907 GE repulsion/induction motor which he has mounted over head to duplicate the shop he purchased it from. It was in a blacksmith shop in Kentucky owned by an Uncle who was a genuine old time blacksmith. He used it to work oak for making wagon beds. Dick purchased it at the sale when his shop closed and spent months completely restoring it. Dick uses the unit especially the jointer for wood working projects. ----- Dick said he would write some short articles on various restoration techniques he used, such as making endless belts, silver soldering bandsaw blades, and pouring Babbitt bearings. --- (Dick quit reading, start writing were
all waiting!) -- He also has a compiled a complete history of the Crescent Co. told to him in a narrative written by a person close to the company. Now he's working on restoring an old post drill press with power feed. We look forward to hearing from you.

Larry Ice: Larry says he enjoys reading his newsletter on snowy nights and thinking about his Crescent UWW sitting in the corner of his cabinet shop. Due to the necessity of making a living, it forces him to concentrate on using his Delta, Porter Cable, and Powermatic tools. Although his boy is old enough to appreciate good tools and old cars (maybe not in that order) he should be able to spend more time on it. Larry's UWW unlike most, has a shaper instead of a horizontal boring machine. He says 'he would be interested in the experiences of some of older subscribers, because the content of the articles would be of interest to those of us brought up with the Sears "quality" (need I say lightweight - nay, cheap) tools." ------ I agree.

THREE PHASE POWER
by Walt Vinoski ©

Many times we let a good deal pass because we are afraid. It could be the fear of buying a broken machine, moving the machine, or supplying it with power. The only reason I know why we (including myself) have this fear is because we doubt our own abilities. Admit it, if someone gave you a 5 hp shaper with interchangeable spindles and a broken power infeed, you would take it without question and by the end of the month it would be cleaned and running fine, including the power infeed system. So why not buy that 3 phase machine.

There are a few methods of converting single phase into three
phase. It can be converted by a transformer (either a rotary or stationary type) or an improvised method. You will sometimes see a 3 phase motor running directly off of single phase. This can be done. The problem is getting the motor turning. In order to run a polyphase motor from single phase, something has to cause the rotor to move initially. Usually capacitors are used because they are cheap. Capacitors allow alternating current to pass through them (direct current will flow but only until the capacitor is charged) and fortunately the capacitor causes the current to lead by 90°, hence, a phase difference. Note that it is not 120° but is sufficient to cause enough opposition between the rotor and stator that the rotor begins to move. Once the rotor is spinning the capacitor is disconnected from the circuit. This is the same with your smaller capacitor start motors. Then the repelling forces from the pulsating alternating current keep the motor running. Although this 3 phase motor is turning, only 1 phase (leg or winding set) is doing the work. This means that leg will run hotter than normal while producing 1/3 of the motor's specified power. Should you need more than 1/3 power you will most likely burn up the motor. If your motor is only slightly loaded this solution is acceptable, although I personally would not run a motor that way.

If you start a 3 phase motor and run it unloaded on single phase, you will notice that it does not heat up because it is free spinning (no load). If you have a voltmeter you can measure about 220 volts between each of the three wires (AB), (AC), and (BC), hence, a rotary transformer. Now you can connect these three wires to another 3 phase motor and it will start immediately (because there is a phase difference).

The voltage may be slightly less than 220 volts but this will not hurt anything. If you want a great rotary transformer that costs even less, use an old 25 cycle motor. These motors are still around. They are big, heavy, and durable,
the way we like 'em and cheap because supply voltage is now 60 cycle. These 25 cycle motors were trolley motors, they were even used as rotary transformers.

If you start and run your 25 cycle motor on 60 cycle house current it will run 2.4 times faster than it was designed, so you will take it up to its speed limit but it will run for many years.

The best thing about running faster is that the rotor cuts through the magnetic flux 2.4 times faster, and the faster you do that the higher the voltage produced. You will measure about 228 or 230 volts on all three pairs. This means your working motor will draw a little less current, and the output voltage will be 60 cycle again.

Two basic types of 3 phase rotary converters will be covered. One system is manually started and very cheap and the second system is automatic and fairly cheap. As far as I know, both of these systems are good up to 150 hp. My own system will handle up to 45 hp.

The first system is straightforward, and will be covered in this issue. You will need a starting motor, converter motor, two switches, two pulleys, one belt, wire, and some male and female connectors. YOU WILL ALSO NEED A CERTIFIED ELECTRICIAN TO WIRE THIS TOGETHER, AND TO MAKE SURE YOU HAVE ENOUGH ROOM WITH YOUR FUSE BOX. IF YOUR HOUSE CAN'T SUPPLY THE CURRENT YOU CAN HAVE ANOTHER BOX INSTALLED.

The first thing to do is purchase a machine operated by a 3 phase motor. This will provide plenty of incentive to get this project off the ground and online. Let's say this machine is 10 hp, you will have to decide if this is the largest motor that will be started in your shop. If it is you will need a "converter" motor which is the next size bigger, which would be 15-hp.
By using an older cast iron motor so it can supply about 2
times its rating. You will be able to run 30 hp of motors or
more, but you can only start a 10 hp or less at one time.

Next decide how many machines you will use at one time and
the total number of hp. If you have five machines, 10 hp,
7-1/2 hp, 5 hp, 5 hp and a 3 hp, you will at sometime run the
10 hp, 7-1/2 hp, and 5 hp, totaling 22-1/2 hp. In fact, in
this case you could run all five with a total of 30-1/2 hp.
If you use a new (lightweight) motor as a converter motor,
you might only be able to pull 150 percent or less of its
rated power through it, which means that you will only be
able to run 1 or 2 machines at a time. So use an old
heavyweight motor.

Make a base and mount your machine men! (See figure #1.)
Actually mount your converter motor on a base. Above this
make a motor mount that is connected to the wall by a hinge.
Connect a pulley to each of the motor’s shaft. Connect a
woodhandle to the folding motor mount (you will need a couple
of inches of travel). Determine how fast each motor will
spin, if they are both set at 1765, then both pulleys will be
the same size. If the starter motor spins at 1765, and your
converter motor will spin at 4320, the starter motor pulley
will have to be about 2.5 times bigger.

Bring in a 220 volt wire with a ground. Connect the ground
to both motor housings (and to your machinery). Take one
"hot" wire and one ground (110 volts) and wireup the starter
motor through a switch. Connect the two "hot" wires (220
volts) through a double-pole switch 'B'. (See figure #2.)

On the other side of the double-pole contacts run two wires
to the converter motor. (Note: there will be an extra motor
wire.)
To start the converter motor, with switch 'A'; you first start the smaller starter motor. Allow it to get up to full speed. Pull up on the wood handle to engage the two pulleys allowing the converter motor to come up to speed. Now turn on the switch 'B' to give power to the converter motor. IF THE CONVERTER MOTOR BEGINS TO SLOW DOWN, OR HUM - SHUT OFF THE SWITCH, AND LET IT COME TO A STOP. DISENGAGE THE STARTER MOTOR AND TURN OFF ALL THE POWER. If this happens you will have to; disconnect one wire from the three phase converter motor and connect the extra motor wire in its place. By changing any two wires of a three phase motor you change the direction of rotation.

Now connect a three wire with ground electric cord to the three phase converter motor. You can hard wire this into your three phase machinery or connect it to a female receptacle. This way you may connect the same line to different machines with a male receptacle.

Start your starter motor and get your converter motor running at full speed. Turn on the power to your converter motor. Disengage the starter motor and shut off its power. The converter motor will still be running. Now go over and turn on the three phase motor you have connected to the converter motor. NOW check the rotation of every motor on each machine. IF the motor is running backwards just change any two wire on that motor.

How much power does the converter take - very little. About as much as a light bulb, because there is no load on the motor.
TO START:
1. Turn on main control circuit breaker.
2. Turn on switch "B".
3. Lift cover and engage pulley to turn conveyor motor.
4. After conveyor motor is up to full speed, turn on switch "A".
5. Turn off switch "B".

FROM HOUSE CIRCUIT BREAKER
TO BOTH MOTOR HORSEPOWER
William M. Baxter (b. 1860), M.I.T. class of 1884, became a partner with his father in 1884. He assumed active management of Baxter D. Whitney & Son about 1900 – his father maintaining only a passive interest in the works, dying in 1915. William continued to serve as head of the business for 50 years until shortly before his death in 1953.

An insurance survey of May 1882 shows a factory complex of eleven buildings -- a main building (machine shop and woodworking shop), a machine shop, an office, a saw shop, a tempering shop, a smithy, an iron shed, a foundry, a tumbling barrel facility, a wheelwright shop, and a carriage paint shop -- employing a total of 75 hands.

By August 1888 the frame machine shop had been extended west joining it with the office. The wheelwright and paint shops were torn down and replaced with a storage and machinery paint shop. By June 1889 another spurt of expansion had extended the machine shop south joining the tempering, smithy, and saw shops -- in effect making the group of buildings into one unit.

One unusual machine of the 1886 period was a slasher for edge cutting thin boards. About the same time Whitney gave a lot of attention to boring machines, mortisers, and edging machinery including both a three and a nine spindle boring machine, a power feed matcher, a jointing doweling machine, and a post boring machine.

A list of Whitney top models near the turn of the century shows the Patent Double Surface Planer, the Patent Single Surface Planer, the Patent Scraping Machine, the Two Spindle Upright Moulding or Shaping Machine, the Back Knife Gauge Lathe, and the Patent Barrel Stave Sawing Machine.
These machines were true cast-iron monsters. The single surface planer came in widths of 24, 26, 30, 36, 40, 44, and 48 inches weighing from 4,000 to 5,120 pounds. The double surfacer came in widths of 24, 26, 30, 36, 40, and 44 inches ranging from 7,300 pounds to 10,300! The back knife lathe came in 20, 30, 40, and 50 inches weighing 2,000 to 2,800 pounds.

After the death of George N. Goodspeed in 1898, Baxter assumed ownership of the G. N. Goodspeed Company (Est. 1851) for about a year.* A local competitor, the firm manufactured tub and pail machinery, specialized lathes, tenoning machines, stave saws, and other woodworking machinery. On October 3, 1898, he sold it to a six man investment group of Goodspeed employees.

During World War I the factory’s metal working equipment was used for making machine tools for Garvin Machine Company and Pratt & Whitney. Whitney briefly continued in the machine tool field with Brown & Sharpe’s No. 23 Cylinder Grinder.

After the war there was considerable redesigning and Whitney built what is believed to be the first tilting arbor bench saw. In order to get enough of the blade above the table, two small diameter electric motors were used on the same arbor.

Whitney’s first shapers were designed back in the 1850’s with belt drive and bronze boxes. The shapers were motorized about 1918, using a small shell type motor driven through a frequency changer. Direct drive and ball bearings were added later. A rotary table automatic shaper with two swinging arms was introduced circa 1925. A vertical spindle boring machine and a saw tenoning machine were built in the 1920’s, and around 1923 a hollow chisel mortiser was made.

*There will be a future article by Dana devoted to this firm.

First and foremost, Whitney was, and is, best known as
planer specialists. The first Whitney planer was made from 1846 through 1866 and was replaced by the Silver Medal (1866-1878). The P-1 (1878-1892) was the first planer built with a chipbreaker to swing concentric with the cutterhead. The P-4 (1892-1918) was heavier and larger than any previous Whitney planer. It featured self-oiling Babbitted clamp cutterhead boxes and a more practical feed with a tightener pulley for releasing. The No. 27 (1911-1918) was the world's first direct motor driven planer. It was installed June 28, 1911 at the Keene Woodenware Company, Keene, New Hampshire.

The P-2 (1883-1893) was the company's first double planer. Its features were similar to the P-1's. The P-6 (1893-1918) was similar to the P-4 and the first planer to use eight gear driven feed rolls. Whitney also built the first direct motor drive double planer (1912-1919) -- the No. 24. It was shipped to General Vehicle Company, Long Island City, New York, November 18, 1912.

All Whitney planers were tested thoroughly before leaving the factory by running lumber through each machine.

After William's death in 1953, the family sold the stock and control of Baxter D. Whitney & Son, Inc. to Richard A. Steels, who continued the same line of machinery. William H. Morlock, a company employee for 47 years was elected president. Kenneth D. Brown with 52 years of service and Elliot D. May, with about 30 years, were elected respectively vice-presidents in charge of sales and engineering.

In January 1955 Morlock, Brown, Guy R. Prebble Jr. (another Whitney employee), George F. Newman, Jr., and William M. York purchased Whitney and made arrangements to have the machinery line manufactured in Greensboro, North Carolina by the Newman Machinery Company.* Newman and York were both Newman officials. Patterns, jigs, tooling, fixtures, and the Engineering
Department were all sent south.

A branch office was opened in Greensboro, and the main Whitney office and sales headquarters remained temporarily in Winchendon. Morlock continued as president until retiring in 1956. The Goodspeed Machine Company eventually moved into the old Whitney factory on Elm Street.

In 1957 the Whitney line consisted of the S-290 motorized Single Surface Planer (36, 40, and 44 inch), the No. 105 light Single Surfacer (24 inch), the No. 33 Double Surfacer (32, 40, and 50 inch), the No. 600 Power Feed Facer, and the No. 97 Double Surfacer. The line also included shapers, gauge lathes, bench saws, stave saws, horizontal vibrating bit mortisers, and hollow chisel mortisers.

In 1975 Whitney merged with Newman and as such, became extinct as a separate entity, but several items continued to be made and sold under the Whitney nameplate.

The present (1987) line is made up of the S-480 direct motor drive Single Surface Planer (26, 36, and 42 inch), the S-290 DMD Single Surface Planer (26 to 44 inches), the S-970 DMD Double Surface Planer (32 to 54 inches), the No. 91 Double Spindle Shaper, the No. 98 Single Spindle Shaper, the No. 299 Single Spindle Automatic Shaper, and the No. 302 Double Spindle Automatic Shaper.

After 150 years of manufacturing a wide range of woodworking machinery the Whitney-Newman line has clearly lost none of its quality and craftsmanship and is still being used in today’s factories and mills.

*There will be a future article by Dana devoted to this firm.

A special thanks to the following:
Mary F. Daniels, Curatorial Assistant, Baker Library, Harvard University, Boston, MA

Lois S. Greenwood, Curator, Winchendon (MA) Historical Society, Inc.

Julia F. White, Librarian, Beals Memorial Library, Winchendon, MA

Al Richbourg, Director of Sales, Newman-Whitney, Division of Newman Machine Company, Inc., Greensboro, NC

In order to prepare a definitive history on American manufacturers of woodworking machinery, Dana is interested in acquiring by loan, photocopy, or purchase (as a last resort!) any and all documents, catalogs, manuals, photos, etc., pertaining to Baxter D. Whitney & Son. Write to:

Dana Martin Batory
402 E. Bucyrus St.
Crestline, OH 44827

BEST BY TEST
THE STORY OF THE J. A. FAY & EGAN COMPANY ©
by DANA MARTIN BATORY

"The J. A. Fay and Egan Company," wrote the editor of Cincinnati--The Queen City (1914), "leads the world in the manufacture of woodworking machinery. Its salesmen traverse the globe, go down one coast of South America and up the other, go over to Cape Town in Africa, to Europe, and Australia."

Recently I was fortunate enough to purchase a 16-inch Model 61 jointer-planer made by this firm. Thoroughly impressed with the quality of engineering and craftsmanship clearly evident in the antique machine I was driven to seek out all the details I could find on the company.
A vague name among today's woodworkers I soon discovered this once illustrious firm was the largest and most influential maker of such machinery in its day, supplying the growing needs of industry since Victorian times, and well into the Roaring Twenties. The huge cast-iron machine shows all the ruggedness and precision Fay & Egan's "Lightning" Line of woodworking equipment was famous for.

"In the manufacture of Fay-Egan 'Lightning' machines," says the company catalog of 1921-22, "only the best materials are used -- the most advanced type of equipment -- and only highly skilled mechanics employed."

Cincinnati, county-seat of Hamilton County, Ohio, on the Ohio River, was chartered as a village in 1802 and incorporated as a city in 1819. Known as "The Queen City" and "The Gateway to the South" it has long been famous for building furniture, woodworking machines, and machine-tools. In 1900 it ranked first in the state as a manufacturing center before losing the title to Cleveland in 1905.

Nearly as old as the city in the J. A. Fay & Egan Company. The company could truthfully boast it was the world's oldest manufacturer of woodworking machines and the first choice of master cabinetmakers. "Best By Test" one of their early advertisements reads.

Company roots stretch back to 1830 when Jared A. Fay began building woodworking equipment for use in this cabinet shop and planing mill in Keene, New Hampshire. A sharp old Yankee, he soon recognized their value and the potential market and began to produce them commercially. In February 1830 he set up the J. A. Fay & Company. Business was so brisk that branch plants were organized in Norwich, Connecticut, and Cincinnati (1836). The main force during these early days was businessman and composer William H. Doane.
In 1850 he transferred all operations to Cincinnati into a five-story brick building at 267-293 West Front Street, at the corner of John Street, taking in nearly an entire block. The warehouse was located at John and Water Streets.

The company soon became a force to be reckoned with. It took the bronze grand medal at the International Exhibition in London (1851) and awards at the Philadelphia Centennial (1876), and the Cincinnati Industrial Exposition (1888). In 1889 it won the Grand Prix medals at the Paris Exposition Universelle, the largest held in Europe to that time.

Fay had agents in Atlanta, St. Louis, New York, Pittsburgh, Mobile, Greensboro, San Francisco, Portland, and Detroit. Foreign offices were maintained in London, Paris, Rotterdam, Brussels, Dusseldorf, Yokohama, Mexico City, Sidney, Melbourne, Brisbane, Berlin, and Copenhagen.

Meantime, in 1874, Thomas P. Egan left Steptoe, McFarland and Company where he had been a salesman for several years pitching their line of thickness planers and mortising and tenoning machines. He created the Egan Company and set up in a factory on West Front Street, directly across from the Fay & Company factory. By 1884, under his management, it had become a serious competitor of Fay & Company. In the 1890’s it was a huge enterprise consisting of two large multi-storied brick buildings covering two blocks.

At Egan’s urging the two firms merged in 1893 becoming the J. A. Fay & Egan Company, with Egan as president, a position he held until his death in 1922. Capitalized at $2,500,000 the new concern became a true giant of its day. The complex now occupied three entire blocks along West Front and John Streets with some 19 acres of production space. By 1914 it was the world’s largest builder of woodworking equipment.

The firm conducted its business, both domestic and foreign,
through its own representatives. Though most business was at home, its export sales exceeded that of all its competitors combined. The profitable trade was mainly due to a skillfully fought worldwide advertising campaign and a troop of gung-ho salesmen.

Around the turn of the century their Cincinnati foundry and factory was visited by General Oto, Commander of the Tokyo Arsenal; likewise Prince Hillkoff of Russia, the Minister of Railways and the Interior, who had come all the way from St. Petersburg to examine the facilities. Many other V.I.P.s visited the plant and there had been delegations from Brazil and Europe.

The three great shipyards at Kiel, Germany -- Krupp's Germania, Howald's, and the imperial government yard -- used their machines, as did the yards all up and down Scotland's Clyde River where nearly two-thirds of all British steamers were built.

"The great demand for the machines is justly attributable," continued Cincinnati -- The Queen City, "to the care and enterprise exercised in originating new machines and bringing them to such perfection that the domestic, as well as the European manufacturers copy the designs as near as they dare. There is hardly a car shop on the continent of Europe that does not use Fay & Egan machinery."

Fay & Egan had a hand in fathering much of Cincinnati's machine-tool industry as well. Both firms, leading producers of woodworking tools in their day, launched many of the founders and early officers of Cincinnati's tool firms on their careers.

In 1939 the Cincinnati Chamber of Commerce drew up a roll of honor of those firms, which, for more than a hundred years, had been an ongoing force in making Cincinnati a distinctive American city by exemplifying that which is best in private
enterprise's traditions. Forty-two companies, including J. A. Fay & Egan and Procter & Gamble Company (1837) were awarded bronze tablets.

In 1923 the company moved from the deteriorating West Front Street District to 34th Street and Robertson Avenue in suburban Oakley into one of the city's largest plants — a one story, saw-tooth type building with 200,000 square feet of space occupying 15 acres of land, costing $1 million. A switch from Baltimore & Ohio's main line serviced the site. Nearly 500 men were employed at the new factory. The firm not only manufactured woodworking equipment but machine-tools as well, and continued its practice of rebuilding and selling used equipment.

From a product line that had started with four models they now sold four hundred. Materials used in the machines had gone successively from wood, through iron, to steel. Babbitt bearing machines with a maze of belts powered by a line shaft had evolved into modern, ball bearing motorized machines. Worldwide company agencies numbered ninety and the company's "Lightning" Line trademark had become known to craftsmen of almost every nation.

Fay & Egan briefly entered the aviation field in 1928, using years of experience in making high-speed woodworking equipment, company engineers designed a profiler to cut propeller blades from wooden blanks. In 1930 a subsidiary, the Fay-Egan Manufacturing Company, was set up to produce aluminum propellers. The corporation was reorganized in 1934 with Clifford P. Egan as a vice president. From September 1932, to September 1933 the company supplied nearly 58 percent of the Navy and U.S. Army's propellers — turning out five units daily. The firm also sold to Russia, Columbia, Bolivia, Holland, and Brazil.

Also in 1928, Fay & Egan began losing money and continued to
do so. The depression (and competition) struck it a blow it never quite recovered from. Even so, it celebrated its 100th anniversary with proper ceremony in December 1929. By 1937 company losses were estimated at $500,000. Losses for the first eleven months of 1936 were put at $41,702. Things looked grim.

January 5, 1937 the company filed a petition in the United States District Court for reorganization under the National Bankruptcy Act. Bondholders were threatening to foreclose even though company officials pleaded to the court recent improvements in business indicated a successful recovery and promised to reduce everyone's losses.

More misfortune soon arrived. Edna Egan Barnes of New York filed an intervening petition January 20th asking for the complete dissolution of the company. Mrs. Barnes, holding $50,000 in mortgage bonds stated the plant and equipment was too antiquated to compete with the new companies building stationary woodworking power machinery. It was about this time that the present giants of the field, Delta-Rockwell and Powermatic, entered the marketplace.

After weathering the petition Fay & Egan filed articles of incorporation January 18, 1938 marking the mechanical phase of the company's reorganization. Articles of incorporation were filed again March 2, 1938 when Cincinnati industrialists Walter E. Schott purchased the company from the Egan family. His new firm would take over the business of the company formed in January to acquire the assets held in receivership. Walter became president, H. C. Schott vice president, and M. C. Schott secretary.

Schott began "streamlining" the company. On October 10, 1938, Fay & Egan's factory at 34th and Robertson was transferred to the Victor Electric Company for its planned expansion. Deed to the building had been held by Joseph F. Schott. Victor's large brick building at 712 Reading Road was conveyed to Joseph
as part payment and it was thought Fay & Egan would move operations to the Reading Road address. Instead, it ended up at Colerain Avenue, Alfred and Cook Streets.

On November 30, 1938, after three weeks of talks, the airplane propeller division was sold off to the Canadian Car and Foundry Company.

By 1953 the company had moved to 2011 Eastern Avenue into a small plant with 27,000 square feet of production space, overhead cranes, and offices. Their "Lightning" Line still carried a variety of universal tilting arbor saws, single spindle shapers, high speed tenoners, heavy duty bandsaws, scrollsaws, drop bed molders, single surface planers, and production band resaws. Fay & Egan still prided themselves as the leader in building the finest precision bandsaws and resaws. By 1956 the firm made only twenty types of heavy industrial woodworking machines.

A bad blow fell November 4, 1957 when Fay & Egan lost foundry patterns valued at $75,000 to $100,000 when a two-alarm fire swept through their West End warehouse. The four-story brick building at 928 Bett Street was completely gutted. Edward H. Gabriel, purchasing agent, placed the building's loss at $25,000.

On September 23, 1963, Fay & Egan was purchased from the Walter Schott family by a group of employees headed by general manager Gabriel for over $1 million. Mrs. Margaret C. Link, associated with the firm since 1938, was the seller. Dr. Joseph Link, Sr., vice president of Fay & Egan, and Mrs. Gabriel had handled the negotiations. Two subsidiary companies -- the Greaves Machine Tool Division and Parkway Grinding Service, Inc. -- were included in the deal.

Said Mrs. Link: "It is a genuine pleasure for me to be able to turn over these reputable and reliable companies to a group of loyal and trusted employees who have been with the company an aggregate of 130 years."
Gabriel, who had started with the company in 1918 as an office boy, and with 45 years of service, became president.

"There will be no interruption in our business," he boldly promised, "but a new and vigorous sales and promotional campaign will be initiated."

But it was not to be. In 1977, three years short of its 150th anniversary, Fay & Egan was turned over to Ohio Valley Machinery, Inc., used machine-tool distributors, for liquidation. The company's plant at 2011 Eastern was put up for sale or lease.

Ohio Valley Machinery not only offered the complete drawings, patterns, jigs, and other fixtures of a long list of Fay & Egan machinery but was also selling a large hoard of woodworking tools taken as trade-ins on new models by the company. The firm had employed between 50 and 90 people in its last year.

Sadly, the J. A. Fay & Egan Company ceased to exist that year when it was purchased by James A. Wulfeck, Sr., a Cincinnati businessman, who wished to assure the old and discontinued woodworking machines could still be serviced.

Mr. Fay's and Mr. Egan's venerable company had lived a full, useful life, and Mr. Wulfeck's purchase will enable their old machines to still faithfully carry out their duties, perhaps well into the next century!

In order to prepare a definitive work on the J. A. Fay & Egan Company, Dana is interested in acquiring by loan, xerox, or purchase (preferably the former) any and all documents, catalogs, manuals, photos, etc., pertaining to the J. A. Fay & Company, The Egan Company, or the J. A. Fay & Egan Company.

AWPTA
P.O. Box 1037
Connellsville, PA 15425